COMSOL初级学习之一

COMSOL Multiphysics[1](下称COMSOL),以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真。COMSOL最先是MATLAB的一个工具箱FEMLAB,发展至今已具有一个基本模块和八个专业模块,此学习系列主要关注基本模块,也即是数学模块的使用学习。

COMSOL的优势在于其使用有限元法求解偏微分方程(Partial Differential Equation,PDE),相比于有限差分法和谱方法求解偏微分方程,可以考虑更加复杂的几何结构和复杂的边界条件。此外,COMSOL软件与MATLAB等软件有完整的接口,便于模拟仿真数据的后处理。

COMSOL数学模块PDE主要分为三种类型:系数形式(Coefficient form),一般形式(General form),弱形式(Weak form),使用难度依次增大,同时求解PDE的适用范围也相应增大。其中系数形式与一般形式较好理解,而弱形式需要相关有限元的知识,COMSOL求解也会将PDE转化为弱形式。相关的有限元参考书籍推荐 A First Course in Finite Elements,by Jacob Fish and Ted Belytschko。这一小节主要使用系数形式求解PDE,以二维热传导为例。

热传导方程的可以写为[2]

ρcpTt(kT)=q˙v

在这里假设 k=constant,q˙v=0 ,同时引进参数 α=kρcp 并在下文约定 α=1 ,方程简化为:
T(x,y,t)t=α2T(x,y,t)

接下来,开始建立模型:
1.打开COMSOL,在 Model Wizard 里选择 2D 模型,接着选择 Mathematical 模块(Physics Interface)里的 Coefficient Form PDE (c) 以及选择 Study 里的 Time Dependent,建立模型。
这里写图片描述

2.创建几何形状,右键点击 Geometry 并选择 Rectangle,输入矩形尺寸参数,再点击 Bulid All Objects,建立如图矩形区域。
这里写图片描述

3.输入方程相应的系数,如图所示。
这里写图片描述

4.设定边界条件,这里右键点击 Coefficient Form PDE (c) 选择使用 Dirichlet Boundary Condition,点击选择矩形区域左边界,设定相应的参数 T=1 r=1 )。
这里写图片描述

5.离散网格,使用缺省的网格,点击 Mesh 选项下的 Bulid All
这里写图片描述

6.点击 Study 选项下的 Step 1: Time Depend 设定求解的时间域,如图所示。
这里写图片描述

7.完成模型的建立,求解模型,右键点击 StudyCompute,得到计算结果。保存在 Result 选项下的 Data Sets,并可以通过 2D Plot Group 查看结果。
这里写图片描述

同时还可以导出动画。
这里写图片描述

  • 15
    点赞
  • 5
    评论
  • 53
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

物理问题的描述方式有三种: 1、 偏微分方程 2、 能量最小化形式 3、 弱形式 参考:http://www.jishulink.com/college/video/c12549 本文希望通过比较浅显的方式来讲解弱形式,使用户更有信心通过COMSOL Multiphysics的弱形式用户界面来求解更多更复杂的问题。COMSOL Multiphysics是唯一的直接使用弱形式来求解问题的软件,通过理解弱形式也能更进一步的理解有限元方法(FEM)以及了解COMSOL Multiphysics的实现方法。本文假定读者没有太多的时间去研究数学细节,但是却想将弱形式快速的应用到实际工程中去。另外,本文也会帮助理解COMSOL Multiphysics文档中常用的到一些术语和标注方法,相关理论可以参考Zienkiewicz[1],Hughes[2],以及Johnson [3]等。 为什么必须要理解PDE方程的弱形式?一般情况下,PDE方程都已经内置在COMSOL Multiphysics的各个模块当中,这种情况下,没有必要去了解PDE方程和及其相关的弱形式。有时候可能问题是没有办法用COMSOL Multiphysics内置模块来求解的,这个时候可以使用经典PDE模版。但是,有时候可能经典PDE模版也不包括要求解的问题,这个时候就只能使用弱形式了(虽然这种情况是极少数的)。掌握弱形式可以使你的水平超过一般的COMSOL Multiphysics用户,让你更容易去理解模型库中利用弱形式做的算例。另一个原因就是弱形式有时候描述问题比PDE方程紧凑的多。还有,如果你是一个教授去教有限元分析方法,可以帮助学生们直接利用弱形式来更深入的了解有限元。最后,你对有限元方法了解的越多,对于COMSOL Multiphysics中的一些求解器的高级设置就懂得更多。 一个重要的事实是:在所有的应用模式和PDE模式求解的时候,COMSOL Multiphysics都是先将方程式系统转为了弱形式,然后进行求解。 PDE问题常常具有最小能量问题的等效形式,这让人有一种直觉,那就是PDE方程都可以有相应的弱形式。实际上这些PDE方程和能量最小值问题只是同一个物理方程的两种不同表达形式罢了,同样,弱形式(几乎)是同一个物理方程的第三个等效形式。 这三种形式的区别虽然不大,但绝对是很关键的。我们必须记住,这三种形式只是求解同一个问题的三种不同形式――用数学方法求解真实世界的物理现象。根据不同的需求,这三种方式又有各自不同的优点。 PDE形式在各种书籍中比较常见,而且一般都提供了PDE方程的解法。能量法一般见于结构分析的文献中,采用弹性势能最小化形式求解问题是相当自然的一件事。当我们的研究范围超出了标准有限元应用领域,比如传热和结构,这个时候弱形式是不可避免的。化工中的传质问题和流体中的N-S方程都是没有办法用最小能量原理表述出来的。本文后面还有很多这样的例子。 PDE方程是带有偏微分算子的方程,而能量方程是以积分形式表达的。积分形式的好处就是特别适合于有限元方法,而且不用担心积分变量的不连续,这在偏微分方程中比较普遍。弱形式也是积分形式,拥有和积分形式同样的优点,但是他对积分变量的连续性要求更低,可以看作是能量最小化形式的更一般形式。最重要的是,弱形式非常适合求解非线性的多物理场问题,这就是COMSOL Multiphysics的重点了。 小结:为了理解PDE方程的弱形式,我们必须跳开常规的偏微分形式,对于积分形式要好好研究。由于最小于能原理对比弱形式来说好理解的多,所以我们将从线弹性开始学习,依次到热传导,电流传导等问题。这几种物理问题都有相关的能量和功率可以进行最小化。我们将只涉及到静态问题,重点是在结构分析和更特殊的线弹性分析。
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值