POJ3177.Redundant Paths

题目链接:http://poj.org/problem?id=3177
思路:这道题目给出一个无向连通图,要求至少添加多少条边才能够使得任意一对顶点间至少有两条不同的路径(没有相同的边,但可以有共同的中间顶点),利用tarjan求出该连通图的边双连通分量,压缩成一个点,最后能构成一棵树,那么添加的边数=(树中度为1的节点数+1)/2,代码如下:

#include <iostream>
#include <vector>
#include <cstring>
using namespace std;

const int MAXN = 5002;
int n, m, s, e;
vector<int> graph[MAXN];
int pre[MAXN], lowlink[MAXN], degree[MAXN];
int dfs_clock;
int g[MAXN][MAXN];

void Tarjan(int u, int source_edge) {
    pre[u] = lowlink[u] = ++dfs_clock;
    for (int i = 0; i < graph[u].size(); i++) {
        int v = graph[u][i];

        if (v == source_edge) continue;//reverse edge
        if (!pre[v]) {//not visited yet
            Tarjan(v, u);
            lowlink[u] = min(lowlink[u], lowlink[v]);
        } else {
            lowlink[u] = min(lowlink[u], pre[v]);
        }
    } 
}

int main() {
    cin >> n >> m;
    //init
    dfs_clock = 0;
    memset(pre, 0, sizeof(pre));
    memset(lowlink, 0, sizeof(lowlink));
    memset(degree, 0, sizeof(degree));

    for (int i = 0; i < m; i++) {
        cin >> s >> e;
        g[s][e] = g[e][s] = 1;
    }

    for (int i = 1; i <= n; i++) {
        for (int j = i+1; j <= n; j++) {
            if (g[i][j]) {
                graph[i].push_back(j);
                graph[j].push_back(i);
            }
        }
    }
    Tarjan(1, -1);

    for (int i = 1; i <= n; i++) {
        for (int j = 0; j < graph[i].size(); j++) {
            int v = graph[i][j];

            if (lowlink[i] != lowlink[v]) {
                degree[lowlink[v]]++;
            }
        }
    }

    int ans = 0;

    for (int i = 1; i <= MAXN; i++) {
        if (degree[i] == 1) ans++;
    }
    cout << (ans+1)/2 << endl;
    return 0;
}

参考链接:http://www.cnblogs.com/frog112111/p/3367039.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值