Deep Learning
落地生根1314
这个作者很懒,什么都没留下…
展开
-
防止训练模型时信息丢失,用于TensorFlow、Keras和PyTorch的检查点教程
参考链接:http://www.atyun.com/12192.html 如果你玩过电子游戏,你就会明白为什么检查点(chekpoint)是有用的了。举个例子,有时候你会在一个大Boss的城堡前把你的游戏的当前进度保存起来——以防进入城堡里面就Game Over了。机器学习和深度学习实验中的检查点本质上是一样的,它们都是一种保存你实验状态的方法,这样你就可以从你离开的地方开始继续学习。...转载 2019-03-13 11:21:20 · 1951 阅读 · 0 评论 -
语音识别数据预处理(添加噪音)和特征提取
0 前言 在作ASR和KWS实验时,必不可少的需要对语音数据预处理,提取特征(业内常见是提取为MFCC),最后在喂入模型中。数据预处理可分为离线处理和线上处理:离线处理:训练之前先对语音数据进行加噪音、调低\高音量、1.5倍速播放等(有人用工具audiomentations),然后再提取MFCC特征到特征文件里(特征文件格式.h5,.csv),训练时数据集从特征文件读取,不需要再预处理了...原创 2019-08-20 09:56:25 · 11892 阅读 · 1 评论 -
转:关于ROC曲线的理解
参考链接: https://www.cnblogs.com/dlml/p/4403482.html 机器学习之分类器性能指标之ROC曲线、AUC值 分类器性能指标之ROC曲线、AUC值一 roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(false ...转载 2019-07-27 10:09:19 · 10316 阅读 · 0 评论 -
转:数据处理——One-Hot Encoding
数据处理——One-Hot Encoding,参考https://blog.csdn.net/google19890102/article/details/44039761转载 2019-08-02 15:21:36 · 237 阅读 · 0 评论 -
ROC False reject rate 和 false alarms
ROC接受者操作特征曲线(receiver operating characteristic)常用的参数可以参考如下链接:参考链接: https://blog.csdn.net/qq_26369907/article/details/97490991 在关键字定位(Keyword Spotting)中,引用ROC评价模型的性能,ROC纵轴为错误拒绝率,横轴为错误警告,如下图图片来源于:...原创 2019-07-29 11:06:59 · 1472 阅读 · 0 评论 -
科研的开始---如何看论文
作者要毕业,就需要写论文;写论文就必须先要看论文,怎么看论文呢?1. 开始刚开始我一眼懵逼,直接去知网,百度,Google。单这并不是最开始要做到;最开始应该先查找你的方向里有哪些顶会顶刊;例如以语音识别为例,这个领域并没有单独的会议或期刊,都属于人工智能这一块,我应该先找人工智能的顶会顶刊,然后在这些顶会顶刊中找到语音方面研究者经常投的有哪几个;人工智能顶会顶刊参考CCF的排名:http...原创 2019-07-06 10:33:18 · 3850 阅读 · 0 评论 -
论文:Keyword Spotting Based On CTC and RNN For Mandarin Chinese Speech
Keyword Spotting Based On CTC and RNN For Mandarin Chinese Speech摘要: 基于隐马尔可夫模型(HMM)和神经网络(NN)的混合模型是当前关键字识别(KWS)系统声学建模的前沿。然而,由于中间语音表示的依赖性,如何有效地训练这样一个混合系统是一个挑战。在端到端语音识别系统的驱动下,提出了一种利用端到端方法直接预测语音单元后验的普通话K...原创 2019-07-04 21:40:26 · 1924 阅读 · 0 评论 -
Dilated Convolution + Receptive Field
1.感受野(Receptive Field)Receptive field 是啥?看看网上的大佬们怎么说。The receptive field is defined as the region in the input space that a particular CNN’s feature is looking at (i.e. be affected by). ——Dang Ha T...原创 2019-07-10 11:25:19 · 752 阅读 · 0 评论 -
TE2E和GE2E损失函数区别
谷歌提出了两种损失函数TE2E(Tuple-based end-to-end)、GE2E(Generalized end-to-end).今天对这两种进行记录。一、TE2E在训练中分为2个阶段:登记和检验。每步训练中数据包含 xj∼x_{j∼}xj∼和M个登记会话xkmx_{km}xkm(for m = 1…M), 可以用 {xj ,(ek1,ek2...ekM)...原创 2019-06-03 22:40:20 · 3609 阅读 · 2 评论 -
项目结构和__init__.py作用
一、文件结构checkpointdata/ __init__.py dataset.py get_data.pymodels/ __init__.py shuffleNetV2.py ResNet.pyutils/ __init__.pyconfig.pymain.pyrequirement.txtREADME.md二、作用1. ...原创 2019-05-17 21:24:13 · 2240 阅读 · 1 评论 -
quantization量化
模型压缩常用的方法有:剪枝,分解、蒸馏、量化、轻量级网络模型。记录学习量化时小结。背景:当前神经网络通常使用浮点数格式存储权重、网络结构等,这是保持模型准确性的有效而且最简单的方法,GPU也可以较好的加速这些计算。但是随着模型加载次数的增加前向推导计算也成正比增加,Quentization能有效解决此问题,它比32位更紧凑的格式来存储数字,并进行计算。可行性:低精度计算是噪音的另一个来源(待确...原创 2019-05-09 15:11:45 · 2562 阅读 · 0 评论 -
SRNN-切片循环神经网络
一、介绍RNN 能够获取输入序列的顺序信息。两个最常用的循环单元是长短时记忆(LSTM)和门控循环单元(GRU),二者均能在隐状态存储之前的记忆,并使用门机制来决定有多少之前的记忆需要和当前输出结合。然而由于循环结构,RNN 不能并行计算。因此训练 RNN 需要花费大量时间,从而限制了 RNN 在科研和工业的发展。一些学者通过改进循环单元来提升 RNN 的速度,也取得了较好的成果。但是这...转载 2019-04-25 11:54:47 · 4836 阅读 · 0 评论 -
DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN
深度压缩:采用修剪,量子化训练和霍夫曼编码来压缩深度神经网络学习模型压缩知识,记录此篇论文学习过程。论文链接: https://arxiv.org/abs/1510.00149论文Pytorch实现GitHub链接: https://github.com/mightydeveloper/Deep-Compression-PyTorchABSTRACTDNN是计算密集型和内存密集型的模型,...原创 2019-05-04 14:55:39 · 5578 阅读 · 2 评论 -
MobileNet V2 论文初读
转:https://zhuanlan.zhihu.com/p/33075914几天前,著名的小网 MobileNet 迎来了它的升级版:MobileNet V2。之前用过 MobileNet V1 的准确率不错,更重要的是速度很快,在 Jetson TX2 上都能达到 38 FPS 的帧率,因此对于 V2 的潜在提升更是十分期待。V2 主要引入了两个改动:Linear Bottleneck 和 ...转载 2019-04-18 22:43:52 · 362 阅读 · 1 评论 -
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices阅读
ShuffleNetShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices最近学习完ShuffleNet V1,参考DFANN博客,对其总结修改了下ref:https://blog.csdn.net/u011974639/article/details/7920055...翻译 2019-04-17 22:36:14 · 403 阅读 · 0 评论 -
ShuffleNet中add层和concatenate层的区别
最近学习轻量级网络:ShuffleNet V1,看论文过程中对其模型中add和concat层不理解,查看一番资料后,总结如下:原创 2019-04-17 10:45:37 · 1136 阅读 · 0 评论 -
Group Convolution分组卷积,以及Depthwise Convolution和Global Depthwise Convolution
参考:https://www.cnblogs.com/shine-lee/p/10243114.html 目录 写在前面 Convolution VS Group Convolution Group Convolution的用途 参考 博客:blog.shinelee...转载 2019-04-16 21:45:09 · 561 阅读 · 0 评论 -
MobileNetV3 论文
AbstractmobilenetV3 是搜索技术和架构设计相结合的下一代mobilenet。MobileNetV3通过结合硬件感知网络架构搜索(NAS)和NetAdapt算法对移动电话cpu进行调优,然后通过新的架构改进对其进行改进。本文开始探索自动化搜索算法和网络设计如何协同工作,利用互补的方法来提高整体水平。通过这个过程,我们创建了两个新的发布的MobileNet模型:MobileNetV...原创 2019-08-12 20:35:46 · 8767 阅读 · 1 评论