最近学习轻量级网络:ShuffleNet V1,看论文过程中对其模型中add和concat层不理解,查看一番资料后,总结如下:
主流轻量级CNN网络
- ShuffleNet V1 和ShuffleNet V2;
- MobileNet V1 和 MobileNet V1;
- Xception
- SqueezeNet
这几个模型是16年来比较流行的网络,值得去学习其论文,跑代码。
参考链接: https://blog.csdn.net/u014451076/article/details/80162924
add层和concat层的区别
通俗讲: add层就是输出结果累加,其维度不变,但信息量增加了;concat层就是把数据结果级联,增加了维度,信息量不同。
举一个例子:
add:
a = [[1,2], [3, 4]]
b = [[11,12], [13, 14]]
c = add(a, b) # c = [[12,14], [16, 18]] 这里add表示add层操作,把输出结果值相加了
concat:
a = [[