ShuffleNet中add层和concatenate层的区别

最近学习轻量级网络:ShuffleNet V1,看论文过程中对其模型中add和concat层不理解,查看一番资料后,总结如下:
在这里插入图片描述

主流轻量级CNN网络

  1. ShuffleNet V1 和ShuffleNet V2;
  2. MobileNet V1 和 MobileNet V1;
  3. Xception
  4. SqueezeNet
    这几个模型是16年来比较流行的网络,值得去学习其论文,跑代码。
    参考链接: https://blog.csdn.net/u014451076/article/details/80162924

add层和concat层的区别

通俗讲: add层就是输出结果累加,其维度不变,但信息量增加了;concat层就是把数据结果级联,增加了维度,信息量不同。
举一个例子:
add:

a = [[1,2], [3, 4]]
b =  [[11,12], [13, 14]]
c = add(a, b)  # c = [[12,14], [16, 18]]  这里add表示add层操作,把输出结果值相加了

concat:

a = [[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值