第9章 hive压缩和存储

本文详细介绍了Hadoop和Hive的压缩配置,包括MapReduce支持的Snappy压缩编码和相关参数设置。同时,讲解了如何开启Map和Reduce阶段的压缩,并探讨了Hive的文件存储格式,如TextFile、Orc和Parquet,强调了列式存储的优势。通过对比实验,展示了不同存储格式的压缩比和查询速度,推荐在实际项目中使用ORC或Parquet格式配合Snappy压缩。
摘要由CSDN通过智能技术生成

9.1 Hadoop压缩配置

9.1.1 MR支持的压缩编码

在这里插入图片描述
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

9.1.2 压缩参数配置

要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
在这里插入图片描述

9.2 开启Map输出阶段压缩

开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
1)案例实操:
(1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
(2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
(3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec=
org.apache.hadoop.io.compress.SnappyCodec;
(4)执行查询语句
hive (default)> select count(ename) name from emp;

9.3 开启Reduce输出阶段压缩

当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
1)案例实操:
(1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
(2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
(3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec =
org.apache.hadoop.io.compress.SnappyCodec;
(4)设置mapreduce最终数据输出压缩为块压缩
hive (default)> set mapreduce.output.fileoutputformat.compress.type=BLOCK;
(5)测试一下输出结果是否是压缩文件
hive (default)> insert overwrite local directory
‘/opt/module/hive/datas/distribute-result’ select * from emp distribute by deptno sort by empno desc;

9.4 文件存储格式

Hive支持的存储数据的格式主要有:TEXTFILE 、SEQUENCEFILE、ORC、PARQUET。

9.4.1 列式存储和行式存储

在这里插入图片描述
1)行存储的特点
查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。
2)列存储的特点
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
ORC和PARQUET是基于列式存储的。

9.4.2 TextFile格式

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用,但使用Gzip这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。

9.4.3 Orc格式

Orc (Optimized Row Columnar)是Hive 0.11版里引入的新的存储格式。
如下图所示可以看到每个Orc文件由1个或多个stripe组成,每个stripe一般为HDFS的块大小,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row group的概念。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:

在这里插入图片描述
1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset。
2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
3)Stripe Footer:存的是各个Stream的类型,长度等信息。
每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

9.4.4 Parquet格式

Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
(1)行组(Row Group):每一个行组包含一定的行数,在一个HDFS文件中至少存储一个行组,类似于orc的stripe的概念。
(2)列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的算法进行压缩。
(3)页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式。
在这里插入图片描述
数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

9.4.5 主流文件存储格式对比实验

从存储文件的压缩比和查询速度两个角度对比。
存储文件的压缩比测试:
1)测试数据

2)TextFile
(1)创建表,存储数据格式为TEXTFILE
create table log_text (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by ‘\t’
stored as textfile;
(2)向表中加载数据
hive (default)> load data local inpath ‘/opt/module/hive/datas/log.data’ into table log_text ;

(3)查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_text;

18.13 M /user/hive/warehouse/log_text/log.data
3)ORC
(1)创建表,存储数据格式为ORC
create table log_orc(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by ‘\t’
stored as orc
tblproperties(“orc.compress”=“NONE”); – 设置orc存储不使用压缩
(2)向表中加载数据
hive (default)> insert into table log_orc select * from log_text ;

(3)查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_orc/ ;

7.7 M /user/hive/warehouse/log_orc/000000_0
4)Parquet
(1)创建表,存储数据格式为parquet
create table log_parquet(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by ‘\t’
stored as parquet ;

(2)向表中加载数据
hive (default)> insert into table log_parquet select * from log_text ;

(3)查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_parquet/ ;

13.1 M /user/hive/warehouse/log_parquet/000000_0
存储文件的对比总结:
ORC > Parquet > textFile
存储文件的查询速度测试:
(1)TextFile
hive (default)> insert overwrite local directory ‘/opt/module/hive/datas/log_text’ select substring(url,1,4) from log_text ;
No rows affected (10.522 seconds)
(2)ORC
hive (default)> insert overwrite local directory ‘/opt/module/hive/datas/log_orc’ select substring(url,1,4) from log_orc ;
No rows affected (11.495 seconds)
(3)Parquet
hive (default)> insert overwrite local directory ‘/opt/module/hive/datas/log_parquet’ select substring(url,1,4) from log_parquet ;

No rows affected (11.445 seconds)
存储文件的查询速度总结:查询速度相近。
9.5 存储和压缩结合
9.5.1 测试存储和压缩
官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
ORC存储方式的压缩:
Key Default Notes
orc.compress ZLIB high level compression (one of NONE, ZLIB, SNAPPY)
orc.compress.size 262,144 number of bytes in each compression chunk
orc.stripe.size 268,435,456 number of bytes in each stripe
orc.row.index.stride 10,000 number of rows between index entries (must be >= 1000)
orc.create.index true whether to create row indexes
orc.bloom.filter.columns “” comma separated list of column names for which bloom filter should be created
orc.bloom.filter.fpp 0.05 false positive probability for bloom filter (must >0.0 and <1.0)
注意:所有关于ORCFile的参数都是在HQL语句的TBLPROPERTIES字段里面出现
1)创建一个ZLIB压缩的ORC存储方式
(1)建表语句
create table log_orc_zlib(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by ‘\t’
stored as orc
tblproperties(“orc.compress”=“ZLIB”);
(2)插入数据
insert into log_orc_zlib select * from log_text;

(3)查看插入后数据
hive (default)> dfs -du -h /user/hive/warehouse/log_orc_zlib/ ;

2.78 M /user/hive/warehouse/log_orc_none/000000_0
2)创建一个SNAPPY压缩的ORC存储方式
(1)建表语句
create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by ‘\t’
stored as orc
tblproperties(“orc.compress”=“SNAPPY”);

(2)插入数据
insert into log_orc_snappy select * from log_text;

(3)查看插入后数据
hive (default)> dfs -du -h /user/hive/warehouse/log_orc_snappy/ ;
3.75 M /user/hive/warehouse/log_orc_snappy/000000_0
ZLIB比Snappy压缩的还小。原因是ZLIB采用的是deflate压缩算法。比snappy压缩的压缩率高。
3)创建一个SNAPPY压缩的parquet存储方式
(1)建表语句
create table log_parquet_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by ‘\t’
stored as parquet
tblproperties(“parquet.compression”=“SNAPPY”);

(2)插入数据
insert into log_parquet_snappy select * from log_text;

(3)查看插入后数据
hive (default)> dfs -du -h /user/hive/warehouse/log_parquet_snappy / ;
6.39 MB /user/hive/warehouse/ log_parquet_snappy /000000_0

4)存储方式和压缩总结
在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy,lzo。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值