-
金融它其实很简单的一个事情,它本质上是从这个时间和空间上通过各种研究来解决信息不对称或者降低信息不对称的问题。金融本质上就是来处理信息的。如果你掌握了信息,其实你就掌握了所有的金融最核心的内容。
-
投资过程当中会需要经常性的克服很多心理上的问题,量化投资的方法通过纪律性来进行克服。
-
量化投资传统的量化投资也叫多一级模式或者多一些多因子的投资,我们看到一个反转因子,反转因子什么意思?是一个非常简单的概念。很多人觉得比如说很多的文科的同学,他对量化投资觉得非常的难以理解。我们举个反转因子,比如说今天星期六一个反转因子怎么构造呢?昨天星期五下午2:30的时候,如果我们把上海证券交易所深圳证券交易所4600的股票,一周以来的收益率都统计一下,也就从周一开盘到周五下午2:30的时候还没有收盘零三点钟收盘,那么周一到周五下午2:30的时候,4600股票把它收益率都做了一个统计,做一个排序。我们选出来100个在本周当中跌的最多的股票或者涨的最少的股票,如果在牛市我们就选涨的最少的股票,如果是熊市就选100个跌的最多的股票,那么持有这100个股票,一个星期也就是说2:30开始分析完这个之后开始建仓,在三年级之前建仓完毕。持有这个组合100个股票的组合,持有到下周星期五的2:30。那么2:30我根据最下个星期的这一,周的收益重新做一个排序,把这4600股票做一个排序,那么有些股票要出去一些股票进来,那么重新把我们的组合做个调整,这就是一个非常经典的叫反转因子的这么一个投资策略,它的基本逻辑是什么?是希望买一些过去一周当中跌的最多的股票,认为它超跌会有反弹,这叫反转因子。其实我们就把这个策略可以做一个从13年到19年做一个收益率的这么一个分布,可以看得出来它是带来明显的有超额收益率,也就是说它的收益率是要高过。指数简单说明。那么再举一个例子,这个例子叫估值,因此估值因此估值因子是什么?把一个股票的价格除以它的每股净资产的价值,那么相当于说衡量的是什么?衡量的一个企业它一股一块钱的净资产对应的股票价格是多少?如果说这个股票价格对应一块钱的净资产,它股票价格10块钱,那么它的Pb也就是市均率就是10倍。如果说股票一块钱的净资产对应的股票价格是8毛钱,那么它的Pb就是0.8,那么这个估值因子是希望做的是什么?呢是希望买到便宜的股票就是说这些股票相对它的净资产来说它的股票价格更低,而因此来说我们是系统性的买入Pb比较低的股票,这就是构成了另外一个因素,叫做估值引起,采用市净率的这么一个估值引起,可以看得出来也是有一些超额收益率。
-
那么刚刚讲的一个是反转因子,一个是这个叫做估值因子,其实对应着我们传统的量化投资里面,它对应的是这个呃两个大类的因子,其中估值因子对值对应的是第二个,也就是我们这里讲的价值因子。那么这个反转因子也就是过去一周的收益率,对应的是我们这边的技术因子,就动量反转。也就是说根据过去。一段时间内股票或者资产的价格交易量等等,它的数据据统计出来的一些因素。当然传统上来说,我们的多因子模型分成5个大类,或者叫质量因子、价值因子、技术因子、成长因子和预期因子,质量因子就是衡量一个企业的它的财务的信息的质量。比如说它对应的利润里面有多少是有实际的现金流的,有多少是没有现金流的,所谓的利润就可能是虚增出来的。对吧?那么成长因子是衡量一个企业的成长性,比如说我们各种各样的比如说净利润的成长率等等预期,因此是衡量的是卖方分析师对企业的各种的预期,包括它的未来的利润的预期,包括它对股票的买入卖出的推荐,所以这都是传统的多因子模型。但是多因子模型其实现在从实际从实操的角度来说,已经是处在非常尴尬的一个境地,原因是我们刚才看到两个例子,一个是估值因子,一个是反转因子,实际上你可以写出成千上万个类似的名词,尤其是这样的名词,我们可以根据各种各样的价格交易量的数据写出各种公式,所以它的问题就在于说传统的多因子模型它已经产生了边际效应递减。
-
这边我看到两篇学术文章,他们都研究的是几百万个教育策略,都是基于传统的框架下面的挖出来因子,比如说技术因子,我可以分析出成千上万个不同的技术因子,然后来看它跟收益率有没有关系,所以它会带来一个边际收益率递减的问题。在这种情况下,传统的多因子模型其实现在已经面临着很大的困境,原因是他是低频的,并且就是说它的数据量是相当有限的,我们讲就是说传统的估值因素或者这个成长因子,它的频率就是很低的,尤其是一些基本面的,它是季度频率的数据,所以传统的多元素模型现在已经其实陷入了一个相对的困境。那么有各种各样的解决方案,比如说我们这里讲的另类数据 To,c码,他可能去爬京东的网上的交易数据量,以此来作为它买入卖出的支撑的另类数据。但是更重要的一个改变方法,其实现在已经在中国,不管是财务管理、资产管理、私募公募里面可能都有一定的高频化现象,尤其是在私募基金里面,而量化投资的高频化现象非常的明显。高频是什么?它就是把数据的分析的颗粒度变得更细,比如之前我们是分析周平的数据,分析日平的数据,但是我现在分析分钟级的5分钟级的申请,团口和这个级别的数据原因是什么呢?
-
高频的数据有两个优势,第一个优势它的预测的我们每一次预测就是在一个作为一个赌博,因为作为统计上来说,你就在做下一个赌注,统计上的显著性必须要有足够的赌注,下注的次数足够多才会体现出来。所以高频的好处是,如果你客户关心的是日净值或者周净值,那么假如你是做一个低群策略,比如你预测的是未来5天的收益率,如果你的目标是预售5天的收益率的话,那么在日净值频率范围内,你出现涨跌是很正常的,原因是因为你的目标你是5天的5天之内的变动,你是没有任何办法来给个说法,那么如果你的是高频的预测,你预测的是分钟的每分钟的收益率,那么其实来说你一天就可以有潜在4个小时的交易时间,也就有200 240个下注的机会,因为你每分钟就有个下注的可能,所以一天就可以下240个赌注,240个赌注,只要你这个策略有合理性的话,其实可以带来非常稳定的收益,也就是说基本上在日平有可能会不出现回撤。所以从这个意义上来说,很明显数据频率越高,因为你的观测客户对你的要求是日进制,所以你的策略的频率越高,你在日净值观测频率上,你的稳定性就越好,也就是客户就越满意。所以这是一个中国的资管也好,量化投资也好的一个现状,那么在美国的投资人是很少去看日平的净值的,在中国不说日品,基本上都盯着周平的镜子在看美国,其实很多时候都是他月评的,因为他这个机构投资者相对比较成熟,但中国的目前的现状就是说很多的投资人都是盯着周平的收益,日平的收益率来考察管理人,所以就导致了量化投资往高频的方向去去突破,这是一个现状。另外一个现状就是随着你高品质数据的越来越多,数据量越来越大的情况下,会导致机器学习算法他的用几率就越来越大。好,那么机器学可能大家都知道基本的概念,我们这做了一个简单的图,机器学习其实是人工智能的整个领域的子集,就是人工智能机器学是一个重要的领域,但是也有非机器学习的人工智能方法,所以机器学习本质上是人工智能的一个手段或者一个领域,但在机器学习这个领域里面深度学习又是一个最前沿的子领域。
-
一些机构,我就不提名字了,也是千亿规模的收益率,去年下半年是一塌糊涂。那么这不是因为其他原因,不是他水平不高,而是说这个不能夸大了所谓的硬件的作用。那么第三个等于说其实就是另外一个叫基本面量化,那么这个方向其实是走的另外一条路了。我不是拼硬件或者这个软件的效率,而是拼的是把传统的投研把它用Excel的表格的方式,或者用相对量化的方式把它表达出来来进行交易,但这个也是一个方向,所以我觉得肯定是个趋势,但是就是说并不是说是你知道事实上我们做的这种计算跟科学计算比起来其实差很远的,就包括大大量的我们知道用超级计算机解决的科学问题,这根本就不是事儿我们做的。
-
我们自己从财富管理端感受到了另外一个比如说来自客户或者是来自投资人,他们的一个感受就是量化它整体还是一个偏黑箱的东西,我的策略的可解释性或者它的透明度相对来讲是不是那么高的,也让很多买量化的投资人,他可能对产品的认知上还有能感觉到比较多的这种信息的不对称。我们未来觉得说这个行业里面有没有什么方法可以来尽量的减降低这个问题,或者是解决它。对所谓信息不对称,就是说它首先我刚才讲的机器学习模型,比如深度学习这些东西,他是个黑匣子,这个问题是永远解决不了,因为它本来就是黑匣子对吧?换句话说你让开发策略人来做策略人来解释,他也没办法很好的解释,所以这个不是我们更要解决的问题,就在于说。量化机构它在实际过程在运行当中它出现了偏离,也就是说他说的做的策略和他实际做的策略出现偏离,这是更大更大的黑匣子的一个问题。那么在这种情况我觉得个人就觉得它一个其实也是需要专业机构来变成一个中间层了,因为高净值的传统的高净值人群,它是没有办法来判断或者分析它的持仓的数据,来根据持仓的数据做归因,来分析它是不是偏离了它宣传的他宣传的策略是什么样子,他宣传的是个无败之中,他宣传的是一件之中,他实际上做的是个什么东西,而这个是非常有一个专业能力的。换句话说高净值人群他要来判断这个是不是真的在黑箱操作在胡乱操作,他是没办法判断,所以这个是一个专业的领域。也就是说对中间层的作用是更加重要的。
-
就是对我们需要更多的比较专业的这种财富管理机构,我们去对产品有更多的竞价和底层的认知,然后给你的投资人做一层保障。还有最后一个问题,其实和您刚刚提到的您上海高精的多因子量化模型在正确诉讼中的应用有关,您提到我们在在去做一些用这个多因子量化模型来精确核定一些证券成虚假陈述给投资者带来的损失这样一个模型,我自己听下来我觉得非常有意思,然后也觉得有一点,其实比如说很多时候我们看到证券的虚假陈述和股价的操纵,它其实是共生的,或者他不是可以说我这个案件是因为休假成熟按键是因为股价操作,他有的时候可能是这两个因素都占到了一定的比例,我们这一个多因子量化模型,我们去把这个市场因素排除掉,把风格因素排除掉,把行业因素排除掉了之后,剩下来的它的我们去界定它造成损失的因子,它可能是非常多的东西融合在一起的,我们怎么去拆解这种比较复杂的情况。这个我们是没法参与的,换句话说是这个意思,我们从股票的变动作为一个整体来看,我们说我们把跟明确的跟财务虚假陈述无关的都扣除掉,尽最大的可能就是扣除大盘,扣除行业扣除风格等等,剩下的我们说无法解释。我们说都算你虚假成熟引起的,当然是不完就不完美的方法,原因是什么?最完美的方法应该是股价变动,直接找出哪一块是由虚假成熟引起的。就是说它一个是从a走到b点,一个从b走到a点,它方向是反的,从我们是扣减法,也就是说我们是逐个排除我们能确定的因素,剩下的模式就是你的虚假手术,但是要倒过来做,其实技术上是很难的,因为就我们无法建模给虚假陈述本身来建模是吧?所以但是我们这个方法虽然不完美,但是它比。不扣除或者说只扣住,大盘其实还是前进的非常多,所以这个就等于说这肯定不是一个完美的方法,我们就是说事实上最后要扣除什么因素,除了我们认为的常见因素之外,其实我们是要跟法院坐下来分析的,包括一个个事件一个事,因为最后是一个法律问题,我们只不过是用金融类语言把它给表达出来,就这个意思。
-
他们发现很有意思,其实我在跟法院打交道过程当中,我们发现法官们特别聪明,原因是什么?我们这些我们是用数学来表达自己的思想,他们是不懂数学的,他们用逻辑来表达思想。所以他们每一步都得逻辑上想通了。所以他们其实非常聪明的,因为真正能够用数学公式来理解一个事情的人,一定是更聪明的人,不够聪明才会这个公式写来写去,所以公式是很简单的,你真的从逻辑上想通了,这就是非常重要。量化比主观的好处就是更有依据。













































说话人1:
重起来。
说话人2:
好的。
说话人3:
说话人1:
看得见吗?对。
说话人3:
可以的。好的嗯,那么。
说话人1:
各位听众各位朋友,其中我想和高精的 MBA的效应和其他项目的效益,非常高兴再次在网上见面,那么也有很多的之前说的可能是听众,那么今天跟大家分享目的是想给大家刚才有章介绍,先来介绍一下我们作为高级教授的一员,我们对一些这个问题的思考,让大家感受一下我们这个课堂是一个什么感觉,所以今天跟大家分享的主题叫做量化投资的趋势,分享,那么这个题目是比较大的,原因是什么呢?金融科技也好,或者说是传统的金融工程也好,你们涉及到的量化投资,那么它这个里面涉及的广多深度其实是比较大的,可能有些同学可能完全不关心技术,可能只关心产品端,怎么来理解这个产品,从量化投资的角度,那么有些同学是做策略可能是更加希望了解技术的细节,所以我是希望通过一个小时的分享,给大家介绍一下我理解的量化投资的一些基本情况,那么因为时间关系肯定可能详细的讨论技术,我大概分三个部分,一个是量化投资的基本概念,第二个是重量和投资的研究深度,我们来探讨一下为什么机器学习它一定是需要的,并且是现在的主流,并且是在未来相当长一段时间内做研究的一个基本方向。那么第三部分是从量化的应用的广度来分析,其实已经跳出量化投资的角度,通过量化模型在证券诉讼里面的应用来跟大家分享一下量化研究,其实是可以跨越一个非常大的宽度的,就是说它应用场景非常广的,所以这么三个部分跟大家分享一下,那么因为在座的各位的背景,包括之前的梳理的训练可能都不太一样,所以我想就是说呃从基本概念上跟大家分享,不会太多的探讨技术细节,这么个框架。
说话人3:
那么首先。
说话人1:
第一步我想跟大家分享的是量化投资的基本概念,那么这个就是说我们今天来看这个题目的话,可能不是什么新鲜的东西,我记得我们刚刚加入高级学院的时候,大概是10年前的时候,其实这个概念是相当的一个新鲜的一个概念,因为当时大概股指期货刚刚推出啊,那么对冲的概念被引入了,那么后来量化投资其实过去10年获得了非常大的发展,尤其在过去的5~7年,我想这个量化已经变成了一个不能算是主要唯一的投资策略,但是是主要的一个投资类别,包括私募公募都有量化的概念在里面。那么在这个背景下,我跟大家分享一下我对量化投资策略的一个基本的理解。那么要讲量化投资,我们先讲一下,我认为金融而金融的本质是什么呢?金融的本质,不可能有不同的定义,不能够认在。
说话人4:
沟通
说话人5:
说话人4:
明白。
说话人5:
说话人1:
说话人5:
说话人1:
认知都不一样。我个人认为的金融它其实很简单的一个事情,它本质上是从这个时间和空间上通过各种研究来解决信息不对称或者降低信息不对称的问题,来做到最终的知识资源配置这么个东西。很简单,比如说我们要投一个项目,但是我们知道这个项目未来会怎么样,特斯拉未来会不会变成一个主流的替代掉传统燃油汽车,所以这是个未来的事情,我们无法知晓。这是个时间上的一个不对称,那么空间上的不对称是什么?比如说我们投一个项目,我们无法知道这个项目它的卖方是不是在有选择的,披露信息,有选择的,做一些甚至虚假的一个财务报表等等的。所以本质上来说,金融它应该来说是跨越时空的这么一个资源配置的这么一个一个一个科学。
说话人3:
那么某种。
说话人1:
意义上讲它如果你是上帝的话,你会觉得金融是很无聊的一个东西,如果你不是上帝,但是你有时空穿梭机,你可以回到过去回到未来,你可以看到未来是什么样子,其实投资就觉得变得很没有意思。那么现状时很有意思的是我们并不是上帝,我们也并没有时时光机,我们无法到未来看到真实的情况,我们也无法在一个交易对手那边,我们真实的判断它的真实情况,所以金融的本质这边我们上面有句英文是叫低效,他说过的一句话低效大家可能不太清楚,它是一个非常大的量化基金。第一需要以它的名字命名的一个对冲基金,在纽约的这么一个对冲基金创始人,在创立对冲基金之前,它其实这个是哥伦比亚的计算机教授。
说话人5:
说话人1:
那么其实亚马逊的创始人之前也是在他手下做对冲基金,后来一次去创样品。
说话人3:
那么第。
说话人1:
一项他有句名言,他说金融本质上就是来处理信息的。
说话人3:
Finance。
说话人1:
是peer Information processing game,就是说如果你掌握了信息,其实你就掌握了所有的金融最核心的内容,你知道明天是什么样子,投资决策将辩证,非常无聊生活性,那么如果你认同这句话的话,如果你认同金融本质上来处理和分析信息的话,你就可以不难理解为什么要做量化投资。任何处理或者分享或者分析信息,尤其在现在信息大量信息的数数据量非常大的情况下,那么它通过统计计算机进行大样本大数据的分析的话变得非常重要。所以从这意义上讲,巴菲特是处理信息的,那么我们今天讲的量化投资也是属于信息的,那么量化投资相对于传统的比如说价值投资,比如说主观投资的区别就在于说它是借助于统计学也好,数学的方法也好,从大量的历史数据里面找规律,我们希望能够尽我们最大的可能找出历史数据里面隐含的能够预测资产价格变动趋势的一个规律,所以一旦找到这个规律之后,我们希望把它代码化程序化,通过程序程序化的方式来进行交易,这就是一个量化投资的一个基本概念。那么你也可以把量化投资理解成如北京best,就是说它是基于规则,量化投资是一个非常清晰的基于规则的这么一个投资策略。换句话说他把规则写成了我们的交易程序交易代码,对吧?它也是个系统化的投资,就是system确定strategy对吧?所以从意义上讲,量化投资跟主观投资并没有本质区别,他们都是在分析信息,都试图在理解这个世界,我们希望理解这个世界,再往哪个方向发展,它这个趋势是什么?这些公司或者这些标的物在未来会以什么样的形式呈现出来?所以从这上讲,量化投资跟主观投资其实并没有本质的区别,当然也就不存在所谓的高低贵贱之分。所以我们会看到有些人觉得量化投资非常的就飘渺,觉得这个是虚无类的东西,就是一堆人坐在这儿写计算机程序,一个黑匣子等等。其实如果你从分析数据的角度来说,它跟巴菲特主观投资做的完全没有任何不同,只不过是一个是借助于简单的数据和直觉,以及对行业的判断做分析,而我们量化投资采用的是系统性的大量数据的方式来做来分析,那么它跟主动投资其实还是有一点区别的,区别在几个地方,第一是纪律性,那么它是基于程序的,也就是说任何一个投资决策,它一定是基于某个信号,某个出发点,某个投资的因子作出的决定,因此在投资买单下出去的时候,他也同时设置好了卖单在什么样的场景下,他的退出是完全基于的程序的一个纪律化的投资,这个当然是有很大的好处,因为它可以克服我们所谓的人类的所谓的弱点纪律性。那么第二点是科学性,所谓科学性就是说我们所有的决策都是基于历史数据里面找出来的规律,而这个历史数据是要具有统计意义的,也就是说不是一个随机现象,是我们认定的具有统计一般规律的这么一个科学属性。当然我们科学性要打个引号,为什么有可能看到量化投资它有很大的很多它的短板,它所谓的科学性是一个历史数据的科学性,在未来的数据里面会不会呈现出来?是值得探讨。这是第二个。那么第三个特点它跟主观投资的区别就在于说量化投资,因为它是基于统计分析的,所以它是基于大样本的一个投资的这种的策略。通常来说比如说你要做股票策略的话,我们经常讲量化投资,你同时持有的股票是300个、500个甚至800个1000个,原因是什么?只有足够多的持仓数量,才能够有统计上的意义,任何一个单一的股票,那么它的随机性太大,所以量化投资突然讲的是投资组合,我们需要买的是一揽子股票,就一揽子至少是上百个股票,而主观投资它往往是集中化投资。所以相对于主观投资来说,量化投资的广度更广,也就是它同时可以投资和跟踪的标的要多得多,但是它的深度远远不如主办投资。对吧?它尽管是大数据,但是它对一个企业或者一个资产的了解程度是远弱于比如说巴菲特对某一家企业的了解程度,这个里面它是一个权衡或者一个叫trades,这个是一个简单的这么背景。那么从纪律性的角度来说,很明显程序化投资,如果你认为你自己有很大的行为弱点的话,其实内外投资可能就适合于你,为什么这张图我们可能都看到过,是一个非常经典的守护星,人是有非常多的呃弱点的,那么在我们就抱歉后面一个电话,在我们的投资过程当中会需要经常性的克服很多心理上的问题,比如说买了之后,它要是涨了,然后就又下调了,割肉的情况下会带来很多心理上的困扰。
说话人6:
而这些通通都可以由。
说话人1:
量化投资的方法通过纪律性来进行克服,所以这是一个我们刚才讲的纪律性的这么一个特点。那么想着量化投资,很多人可能觉得非常的深奥,其实并不完全深奥,我这边给大家举一些例题,量化投资传统的量化投资也叫多一级模式或者多一些多因子的投资,我们看到一个反转因子,反转因子什么意思?是一个非常简单的概念。很多人觉得比如说很多的文科的同学,他对量化投资觉得非常的难以理解。我们举个反转因子,比如说今天星期六一个反转因子怎么构造呢?昨天星期五下午2:30的时候,如果我们把上海证券交易所深圳证券交易所4600的股票,一周以来的收益率都统计一下,也就从周一开盘到周五下午2:30的时候还没有收盘零三点钟收盘,那么周一到周五下午2:30的时候,4600股票把它收益率都做了一个统计,做一个排序。我们选出来100个在本周当中跌的最多的股票或者涨的最少的股票,如果在牛市我们就选涨的最少的股票,如果是熊市就选100个跌的最多的股票,那么持有这100个股票,一个星期也就是说2:30开始分析完这个之后开始建仓,在三年级之前建仓完毕。持有这个组合100个股票的组合,持有到下周星期五的2:30。那么2:30我根据最下个星期的这一,周的收益重新做一个排序,把这4600股票做一个排序,那么有些股票要出去一些股票进来,那么重新把我们的组合做个调整,这就是一个非常经典的叫反转因子的这么一个投资策略,它的基本逻辑是什么?是希望买一些过去一周当中跌的最多的股票,认为它超跌会有反弹,这叫反转因子。其实我们就把这个策略可以做一个从13年到19年做一个收益率的这么一个分布,可以看得出来它是带来明显的有超额收益率,也就是说它的收益率是要高过。指数简单说明。那么再举一个例子,这个例子叫估值,因此估值因此估值因子是什么?把一个股票的价格除以它的每股净资产的价值,那么相当于说衡量的是什么?衡量的一个企业它一股一块钱的净资产对应的股票价格是多少?如果说这个股票价格对应一块钱的净资产,它股票价格10块钱,那么它的Pb也就是市均率就是10倍。如果说股票一块钱的净资产对应的股票价格是8毛钱,那么它的Pb就是0.8,那么这个估值因子是希望做的是什么?呢是希望买到便宜的股票就是说这些股票相对它的净资产来说它的股票价格更低,而因此来说我们是系统性的买入Pb比较低的股票,这就是构成了另外一个因素,叫做估值引起,采用市净率的这么一个估值引起,可以看得出来也是有一些超额收益率。那么刚刚讲的一个是反转因子,一个是这个叫做估值因子,其实对应着我们传统的量化投资里面,它对应的是这个呃两个大类的因子,其中估值因子对值对应的是第二个,也就是我们这里讲的价值因子。那么这个反转因子也就是过去一周的收益率,对应的是我们这边的技术因子,就动量反转。也就是说根据过去。
说话人6:
不错。
说话人1:
一段时间内股票或者资产的价格交易量等等,它的数据据统计出来的一些因素。当然传统上来说,我们的多因子模型分成5个大类,或者叫质量因子、价值因子、技术因子、成长因子和预期因子,质量因子就是衡量一个企业的它的财务的信息的质量。比如说它对应的利润里面有多少是有实际的现金流的,有多少是没有现金流的,所谓的利润就可能是虚增出来的。对吧?那么成长因子是衡量一个企业的成长性,比如说我们各种各样的比如说净利润的成长率等等预期,因此是衡量的是卖方分析师对企业的各种的预期,包括它的未来的利润的预期,包括它对股票的买入卖出的推荐,所以这都是传统的多因子模型。但是多因子模型其实现在从实际从实操的角度来说,已经是处在非常尴尬的一个境地,原因是我们刚才看到两个例子,一个是估值因子,一个是反转因子,实际上你可以写出成千上万个类似的名词,尤其是这样的名词,我们可以根据各种各样的价格交易量的数据写出各种公式,所以它的问题就在于说传统的多因子模型它已经产生了边际效应递减。这边我看到两篇学术文章,他们都研究的是几百万个教育策略,都是基于传统的框架下面的挖出来因子,比如说技术因子,我可以分析出成千上万个不同的技术因子,然后来看它跟收益率有没有关系,所以它会带来一个边际收益率递减的问题。在这种情况下,传统的多因子模型其实现在已经面临着很大的困境,原因是他是低频的,并且就是说它的数据量是相当有限的,我们讲就是说传统的估值因素或者这个成长因子,它的频率就是很低的,尤其是一些基本面的,它是季度频率的数据,所以传统的多元素模型现在已经其实陷入了一个相对的困境。那么有各种各样的解决方案,比如说我们这里讲的另类数据 To,c码,他可能去爬京东的网上的交易数据量,以此来作为它买入卖出的支撑的另类数据。但是更重要的一个改变方法,其实现在已经在中国,不管是财务管理、资产管理、私募公募里面可能都有一定的高频化现象,尤其是在私募基金里面,而量化投资的高频化现象非常的明显。高频是什么?它就是把数据的分析的颗粒度变得更细,比如之前我们是分析周平的数据,分析日平的数据,但是我现在分析分钟级的5分钟级的申请,团口和这个级别的数据原因是什么呢?高频的数据有两个优势,第一个优势它的预测的我们每一次预测就是在一个作为一个赌博,因为作为统计上来说,你就在做下一个赌注,统计上的显著性必须要有足够的赌注,下注的次数足够多才会体现出来。所以高频的好处是,如果你客户关心的是日净值或者周净值,那么假如你是做一个低群策略,比如你预测的是未来5天的收益率,如果你的目标是预售5天的收益率的话,那么在日净值频率范围内,你出现涨跌是很正常的,原因是因为你的目标你是5天的5天之内的变动,你是没有任何办法来给个说法,那么如果你的是高频的预测,你预测的是分钟的每分钟的收益率,那么其实来说你一天就可以有潜在4个小时的交易时间,也就有200 240个下注的机会,因为你每分钟就有个下注的可能,所以一天就可以下240个赌注,240个赌注,只要你这个策略有合理性的话,其实可以带来非常稳定的收益,也就是说基本上在日平有可能会不出现回撤。所以从这个意义上来说,很明显数据频率越高,因为你的观测客户对你的要求是日进制,所以你的策略的频率越高,你在日净值观测频率上,你的稳定性就越好,也就是客户就越满意。所以这是一个中国的资管也好,量化投资也好的一个现状,那么在美国的投资人是很少去看日平的净值的,在中国不说日品,基本上都盯着周平的镜子在看美国,其实很多时候都是他月评的,因为他这个机构投资者相对比较成熟,但中国的目前的现状就是说很多的投资人都是盯着周平的收益,日平的收益率来考察管理人,所以就导致了量化投资往高频的方向去去突破,这是一个现状。另外一个现状就是随着你高品质数据的越来越多,数据量越来越大的情况下,会导致机器学习算法他的用几率就越来越大。好,那么机器学可能大家都知道基本的概念,我们这做了一个简单的图,机器学习其实是人工智能的整个领域的子集,就是人工智能机器学是一个重要的领域,但是也有非机器学习的人工智能方法,所以机器学习本质上是人工智能的一个手段或者一个领域,但在机器学习这个领域里面深度学习又是一个最前沿的子领域。所以。
说话人10:
明白了
说话人3:
说话人10:
情况是不是?
说话人3:
说话人1:
解放,那么即使公司我们工程是什么意思?说的是资产的实际的收益率,股票 I在时间t加一资产的实际的收益率,它等于什么?等于它的预期收益率加一个噪音。这个噪音其实是一个未来的比如说一个带来一个外星的冲击,所以我们要做的是给定我们现有的变量z这个变量,我们比如把它叫成,因子,我们z是一个结余维度的因子来预测未来的预期收益,所以本质上就是预测。好吧,那么股市的数据它跟我们通常的其他的机器学习应用场景的数据有很大的一个区别,却在哪里?第一,我们的样本,如果我们考虑横截面的预测,什么叫横截面的预测?我们规定4600的A股的股票,我们希望预测出来下个星期下个月或者下个5个交易日,哪些股票涨的会最多,哪些股票涨的最少或者跌的最多,所以我是预测的样本有4600个或者将近5000个,那我们的因子是5,千亿呢有多少?这就是很有意思的一个话题,我们刚才已经讲了传统的因子模型已经可以产生出来成千上万个因子,我们刚才看到200万个因子,也就是说我们想预测4900个4600个股票的收益率,但是我们有的数据的这个维度是上万个或者甚至上百万个,这种情况下就会出现一个维度问题,也就是说我们的因子数结远远大于我们的预测的样本的这个数量是n也就是4600个,那么我们知道统计上来讲,如果你的q大于n其实你线性回归就无解了,因为你会出现无数个可能无解,那么即使减小于n但是足够大的时候,线性模型它也会存在很大的挑战。所以传统的多因子模型碰到这个情况下就很成问题了,原因是什么?传统的多因子模型怎么解决这个问题?低文化他把这个200万个因子缩小成200个去,其中最有用的200个用来做1个线性模型来预测,这个当然没问题,但是它浪费了很多有价值的信息。我们看到右边这个图看得到,过去100年当中,从1920年到2020年,我们看到美国的上市公司它财务数据的披露数据量是暴增,也就是它的因子数量会越来越多,这是第一个原因,也就是说它的因子数远大于你的标的数,出现一个统计上的挑战,更为挑战。第二个问题是在于哪里?我们的因子带来的效果有可是有可能是非线性,非线性是什么意思?这边我们看到的是有家研究机构叫五福一,社区几年前做了一个对全世界各个市场的股市,它的因子的效果做了做了一个描述性统计,我们看到比如说在c这张图里面看到的是什么?看到ax ja x就意味着是亚太地区除了日本Asia excluding Japan,亚太除了日本之外的亚太股市里面,它会出现一个现象,随着一个公司它的收入的增长,随着他收入的增长的话,未来收益率会上升,但是收入增长超过一定幅度的话,它会变成下降,也就是说它并不是一个说随着你的一个公司营业收入的增长,未来的股价收益率就是线性增长,它是先增长在下降,那么就导致什么?传统的线性模型根本就抓不住这些规律,因为你做出来亲人一维的线性的这么一个关系,所以因此的非线性效果也非常重要。那么第三个原因是什么?因子的交互效果,因此的交互效果是什么?两个因子,它并不是单独的独立的影响未来收益率,而是有个交互作用。那么我举个例子,什么叫交互作用?这边是一个很著名的一篇论文,也是AQ二的创始人可以说s写一个任务,那么它交互作用是什么意思?比如说你很喜欢买便宜的股票,你就是喜欢价值投资,价值投资是什么意思?市盈率非常低的。也就是说相对于今天的利润来说,它的股价非常低,那么你买它没问题,但是你如果去做量化回撤的话,把数据拿过来看的话,市盈率非常低的股票,未来收益率是不是更高呢?答案是。是的,平均上来说市盈率非常低的股票,未来的收益率的确是稍微更高一些,但是高的幅度非常少,也就是说这个信号非常弱,原因是什么?因为它便宜有可能有各种原因,所以这个公司一个亿的利润,但是市值只有比如说10个亿,也就是市盈率是10倍,很便宜。但是它为什么不涨?有各种原因,所以他有可能长期就是这么便宜。所以如果你仅仅仅是基于市盈率来做策略的话,你会发现买便宜的股票的确是能带来超额收益,但这个超额收益并不是很大,换句话说它其实是这个效果不是特别好。那么交互效果是什么意思呢?我去买便宜的股票,也就是市盈率特别低的股票,但是不是马上就买,是什么时候等股价开始启动的时候,所以就是说开始出现动量的时候,如果这个股价没有出现动量,没没有出现加速启动的情况下,我根本就不碰便宜的股票,因为它有可能一年便宜两年便宜永远便宜下去。所以这个因子是什么意思?是说你应该买便宜的股票,但是只有在股票出现了股价收益率出现动量的情况下,也就是开始启动了,你再去买它,所以这就叫交互效果,你是把动量因子和价值因子,也就是市盈率把它交互一下,两个合在一起使用。那么这个也是传统的多因子模型抓不住的东西,因为它是两个变量之间互相来进行交互,所以因为这个原因,机器学习基本上来说,它本质上就是用来做统计预测的一种高维模型,并且高危模型它最大的特点就是非线性,它每个因子它对未来的预测变量的影响,它是一个非线性的效果,并不是一个线性的说线性的趋势。另外它可以有交互的效果等等,所以本质上来说它适用于高维数据来进行股价收益率的预测。那么这个机器学习应该来说是我想我们如果以后在校友或者是由女同学来高精度MBA的话,一定会学多因子模型,这是一个线性模型。但是就跟大家分享的是说线性模型其实在投资的领域,比如说量化投资领域,现在其实已经是相对的比较的传统了,最新的趋势机器学习就是非线性的方式,那么机器学习在资产定价领域里面有非常多的好处,但是也有非常大的挑战是什么呢?第一,股价里面的现状比是非常低的,性造比就是signal to north Asia,也就是说股价里面的信息,你找出来的变量对股价反映的信息含量相对它的噪音比来说,非常低的资产定价的领域,跟比如说人脸识别或者其他的领域,资产定价的情况下现状比非常低。数据的维度啊非常非常多,那么同时它的吸收性不确定,我们在很多其他的机器学习的应用场景,它是可以把它很多的特征都去掉,也就是它息收入可以非常高,但智能定价领域其实是不确定。
说话人2:
真的能。
说话人1:
最后一个资产定价领域里面存在着投资者学习和博弈的过程,也就是说你学习发现了一个规律,一旦开始用于交易的话,在未来可能就不成立,所以是非常难的一件事情,所以我们这里看到的是一个学术研究,他做的是什么?用来预售未来一个月的收益,把过去119个月的收益拿来用来预测未来一个月的收益率,同时把这119个月的收益率的平方和立方都放在里面,所以总共有多少?357个因子。那么就是说把过去119个月的收益率以及它们的平方和立方放在这里面来预测未来一个月的收益率,这是一个最最傻的一个线性的这么一个其实是非线性的,但是一个线性的广义线性框架里面来预测收益的这么一个东西,我们看到在右边他的20 20块也就是r方式有多少?是1%左右,红框里面体现出来,也就是说我们357个变量能够解释股价的收益率的大概1%左右。所以你可以想象这个里面有多大噪音,股价的变动有太多的随机性在里面,是给自己的资产定价,给机器学习的资产定价给我们带来非常大的挑战。好,但是不管怎么说,我们还是要推动技术在量化里面的应用,所以设计模型已经至少是从应用的场景来说已经是过去时了,我们现在所有的一流的机构都在做非线性模型,也就是积极学习,但是在机器学习里面又分成传统的机器学习和深度学习。我个人认为未来的应用场景应该是集中在深度学习,为什么传统的机器学习模型,比如说呃,主流模型是集成素,集成素如果大家熟悉的话都知道你可以分两种两种大的 Back in,毒死品白领叫做毒死出来给你啊,那么其实它本质上是一个串行的方式来做,同时进行很多组的随机抽样来进行学习,然后把弱的学习契合在一起,变成一个抢雪机器。不适应是什么?我做一个弱学学习器,做一个弱模型,然后改进它,再做一个弱模型,在逐步改进,然后把路径上的不同的模型拿过来,合成一个总的模型,但不管怎么说,它都是叫做集成素的模型,那么我们感觉目前的一流的机构到目前为止都用的是传统的机器学习模型,也就是说用的叫做寄生素的模型。这个做起来很简单,其实运用起来的话请拍头也就几行代码,那么接下来会什么样子?我们认为深度学习应该更有,潜力,为什么?因为传统的机器学习至少在其他领域是已经撞墙了,已经是到了天花板,那么近几年来在AI领域的研究,其实主要是围绕深度学习和强化学习。我们我个人感觉在我们中国的量化的研究领域,投资的实践领域,其实传统机器学习已经被大量使用了,比如说我们就要看到的随机森林原则,boss对吧?它是个白领的方法,再比如说差距不是顶差距,不是这个不是你的方法,我相信所有的机构都在用,但是未来可能更值得探索的是深度学习,为什么我们看这个机器学习,我们这边有abcdefgh这a是传统的机器学习模型,它已经是非线性的,但是传统的模型,比如说我们看到支持向量机的模型,决策数的模型等等,那么b是什么?是一个深度的神经网络,那么它是个神经网络模型,但是它的当中的中间层非常多,也就是说它的深度是比传统的模型要深很多。我们看得出来传统的机器学模型在这个图里面只占非常小的一块,我们大量的前沿的研究都是在bcdefgh比如说c是一个卷积神经网络,随机神经网络在人脸识别视觉识别里面一个大量什么?它对于图像识别以及局部的特征的一个发掘特别有效,对吧?第一是我们的叫做循环神经网络rnr那么它对分析序列性的数据,比如说一个句子里面它的词语出现的先后顺序,它他对于序列性的东西是非常有用的,比如长短期记忆这个模式,再比如说ff是同神经网络,同神经网络为什么对我个人认为对接下来的量化也就非常有帮助,因为公司股票之间的关系,它并不是一个平行的一个随机的关系,它是存在一个中心节点,它是存在上下游,它是存在行业之间的关联的,所以它公司跟公司之间是存在通过行业,通过个股它的一个上下游价值链的这么一个关系,所以它一定是一个本质上是一个图。所以我们在图神经网络领域做大量的研究,一定是可以用来做我们的股票价格预测的更好的一个模型,而不是简单的把这4600股票当成毫无关系的直接软的平行的数据来看,所以等等这就是积极是我们是onto叫自编码,自编码它本质上是一个非线性的这么一个无监督学习的东西,对吧?我们讲传统的组成化分析是一个线性的这么一个数据的一个价位的东西,那么它这是一个非线性的东西。等等,所以我们从上图可以很简单的看出来说,传统的机器学习模型其实是现在前沿领域里面的很小一部分,大部分都是已经是超越了传统的机器学习模型,所以一定是会在我们讲量化研究里面会得到更多的应用。那么我们这边右边看一个例子,这个例子是什么?一篇学术文章,学术文章他们做的是什么?他们做的是用卷积,神经网络来做股票价格的这个图的识别,我们讲传统的很多投资人对吧?传统的比如说用技术指标来进行投资的很多人对吧?他看头肩顶他看比如说突破,看看也有很多用手所谓的缠论来进行分析,那么它是从视觉上来识别这个图形的,对吧?我们传统的价量,因子其实并不是看视觉的,我们是看它的公式表达式,对吧?所以这篇文章是做什么?用?视觉识别领域用了非常多的卷积神经网络,通过卷积长的变换,然后来制度的区别,股票价格图的形态,然后用来做未来收入的预测。所以这个是一个用深度学习模型,用CNN卷积神经网络在以图像的方式来进行识别这么个例子,我相信这是一个比较大的趋势。换句话说我们这边 cdefgh这些模型在我们接下来的策略研究或者量化投资里面一定会产生越来越重要的作用。或者我刚才讲的传统的线性模型,甚至于传统的机器学习模型其实已经到了天花板,它的石油已经是非常熟悉的。我们会的刚才其实已经提到这个概念,说如果一个东西被用的多了,一旦被大量用于交易的话,它就被效果就会消失,这是股市或者资产价格资产市场资本市场里面的一个明显的特点。对吧?如果大家都用这个数模型,都用计算数的模型来做收益率的预测的话,很快超额收入就会下降就会消失,对吧?我们知道去年年底去年11月下旬直到今年的2月中旬33月份,其实很多的量化机构都出现了大幅的超额回撤,主要的原因我认为就是他们可能算法雷同,可能都用的是简单的机器学习模型。那么当然它也有不足,深度学习有很多问题,包括我们讲的机器学习,总体上来说它有问题,但最大的问题是个黑箱,他无法解释里面线性模型是可以每个系数进行解读的,我可以理解它它是在在做什么,那么非线性模型它最大的问题是没有逻辑解释性,所以这是一个很大的问题,同时它对算力或者数据的要求非常高。我们讲股票的数据看上去很多,比如说这个级别的数据,分钟级的数据,但是其实对我们很多的真正的非常深度学习的算法来说,它数据量还是不够,所以对数据的要求和算力的要求都非常高。好吧,这个是我们讲的第二个主题点,就是机器学习在接下来量化投资的应用,因为时间关系我们因为并且大家的背景也是差别非常大,所以我没有详细的介绍你们的算法的细节。那么第三部分是想跟大家介绍一下从广度把量化的模型,从跳出投资的领域,或者买股票买期货,或者做简单的二级市场投资的,人跳出来看他在司法的正确诉讼领域的应用。那么这个是为什么这个很有意思,我有个朋友以前是现在也是麻省理工斯隆商学院的教授,叫ST和sorry,那么它很有意思,它之前有两年去了 Bgi也就是后来被布拉克拉克收购去做量化,做量化投资,做了一个equity预测姿态,那么它当然对这个因子模型也做了很多的研究和了解,后来他又回到MIT,那么三年前的时候,美国证监会请他去做首席经济学家,做其实是做各种政策性的监管性的东西。前两天我碰到他在一个在线的会议上碰到他跟他聊了几句,他就说他说我以前的工作在布莱布朗克做的量化其实很没意思,每天关心预测收益率,这个世界除了收益率没有其他的东西,这个世界非常的对,这个世界非常小。小海的对他来说,他去了证监会才觉得一下子视野宽广了,他关心很多事情,关心市场的有效性,关心资本市场对经济的一个引领作用,就是支持作用等等,所以当然我不是说量化投资没用都是非常重要,从资产管理角度来说是非常重要的领域。但是我们其实知道量化模型它其实有更加广的一个领域,其实我们从人人的职业发展规划或者一个兴趣角度来说,你会发现量化其实远远不限于买卖股票。我们这个举个例子,这也是我们实际上研究院高级研究院实际是操作的一些案例,来跟大家分享一下,也就这样把投资跟证券诉讼有关系。但他想我们刚才讲的那些模型跟证券诉讼有什么关系?有关系,首先我们知道中国整个资本市场在进行叫做注册制改革,一开始科创的推出,后来创业板现在希望推向全面注册制,也就是说希望主板包括上交所,深交所主板也都推行着手机,我们这儿看到一个图是什么图?是看得出来,这条黄色的线是美国纽交所和纳斯达克的上市公司数量,可以看得出来过去20多年当中,它的上市公司数量其实在逐渐下降,为什么会出现下降?就是说注册制它是上市容易,但是退市更快,所以退市的公司其实大于上市的公司会出现什么现象?90年代中期的时候将近9000家上市公司,到现在其实只有5000多家6000家不到,因为有大量退市公司,它是个注册制的一个特点。同时我们注意到什么特点?尽管上市公司的数量在下降,但是蓝色的巴尔也就蓝色的柱状图,其实反映的是他们的正确诉讼的数量,也就是集体诉讼的数量,它是 Action的培训,我们看得到出来虽然公司的数量在下降,但是诉讼的数量在上升,原因是什么?诉讼事项你一定会通过法律的手段来维护投资人的权益,包括券商,包甚至包括证监会,包括交易所,它的目标不是说是来给大家把风险全都拆除掉,然后来做。绝对意义上的看本人,其实它是一个信息充分披露风险制单,就通过市场化的方式来解决纠纷的,所以我们看到注册之下,证券诉讼一定会越来越多,这是一个趋势,美国的趋势很明显,虽然数量是上市公司数量在下降,但打官司退费诉讼的数量在上升,那么其实这一点在中国会一定会出现我们今天讨论的证券虚假陈述的一个这么个案件,什么叫证券虚假陈述?一个上市公司比如说他财务欺诈财务造假,那么就属于他虚假性的在陈述他的信息披露,或者说它没有完整性的完全完整的真实性的披露,它的信息都叫虚假陈述,是一种非常常见的证券的违法行为。我们看到最近的很著名的一些案子,比如说5元债一个债券的上市期战发行对吧?康美药业也是巨大的核心影响力的案子,乐视就不说了,所以中介虚假陈述是常见的一个诉讼。那么在正确虚假陈述这个案件当中,其实关心的有几个问题,一个是投资者什么时候买入,什么时候卖出,在哪个区间买入,卖出可以获得赔偿,换句话说,有权利来提出诉讼来来索赔,这是一个非常有意思的法律问题,如果咱们听众当中有法律界的朋友的话,应该都知道所谓的三日衣架叫实施日、接入日、基准日等等基准价等等,这些都是法律包括法院要决定的事情。第二个事情是投资人的亏损有多少可以取得赔偿,也就是说有多少投资人亏钱了,有多少损失,应该归功于财务欺诈虚假陈述。我们今天重点讨论这个问题,也就是说量化模型在这个领域里面有没作用?其实通过我们的实践,我们发现它有巨大的作用。举个例子,比如说有一个公司它在2015年发布的2014年的年报当中虚增了营业收入4000多万,虚增的利润将近1,000万,占当年利润的70%,这个是一个实际的情况,也就是说他事后被监管处罚,认定他15年的时候,15年3月份在他的14年的年报里面是有虚假陈述财务价值。那么有投资人买了他股票,亏损了很多,有损失有很大的损失,现在就来起诉他说需要取得赔偿,对不对?到底应该赔多少钱呢?就回答这个问题,其实概念上是很简单的,什么意思?法律上回答的问题是什么?是在另外一个平行宇宙当中,这家公司的高管实际控制人并没有虚假陈述,并没有财务照相在平行宇宙当中,所有的其他的公司的经营和其他的经营活动,包括所有的其他的东西都是一样的。唯一的区别就是还没有上线。所以我们需要知道的是在平行宇宙当中,公司的股价随着时间应该是怎么走向的,就这么简单,我们应该构造出另外一个平行世界,把它的股价走势给画出来,然后跟我们这个现实世界当中它的股价从实际的走势做个对比,这两个的差额就是由于虚假陈述带来的股价的区别,而这个唱应该上市公司赔给投资人的。好,这是很简单的一个问题,从逻辑上来讲很简单,但是在实务当中或者在实践当中,要构造一个平行宇宙是非常难的一件事情。比如说很简单,一个投资人买了财务造假的公司的股票,后来卖了亏损了百分之70那么这个投资人说你赔我70%,因为你财务造假,我买了你的股票误导我,让我买了你的股票,结果我亏了70%,你是不是应该70%都赔给我?上市公司。
说话人5:
说这不合理,为什么?
说话人1:
因为在你买入股票持有期间,大盘指数跌了40%,也就是说你买任何股票都要扣40%,跟我无关,所以我最多赔30%,70要减去40,我最多给30%,投资人说好像有点大,上市公司又说了,大盘虽然下跌了40%,但是我的这个行业平均跌了50%,这个行业跟我无关了这行业平均都跌了50%,所以我最多赔20%。投资人说原告说有点到了就赔20%。好了,讲到这个地步,都还可以理解。但是在这个时候,被告也就是上市公司又说了,即使我们不财务造价,但是由于我经营不善,股价会跌60%,也就是我当时两年前的时候没有造价,即使我只是经营不善,他就会跌60%,所以我最多得10%。那问题就在了法院,在这个时候怎么来看这个事情?听上去有道理,被告说的有道理,但是怎么来计算?这就用到我们多因子模型,对吧?所以这是我们高新学院其实跟上海金融法院在全国第一个使用量化模型判的两个案子的定,前两个案子一就终于打一个莆田由痛这都在网上可以搜索。那么通过量化模型来给投资人计算他的损失应该赔的损失金额。在这之后,其实我们现在做了将近20个全国各地的法院,和唉,包括金融法院,包括中院,包括高院都有的,都采用了我们这个模型,那什么意思呢?这个是我们这个判决书网上都可以收到中意达普天邮通实际的判决书。好。对不对?什么意思?我们在这里面用量模型做的是什么?我们希望把这个公司股价的变动,由于大盘也由于指数的变化引起的收益率的变动,由于这个行业的变动,考虑进来,同时把常见的因子什么叫因子?我们讲因子其实本质上就是影响股价涨跌的因素。比如说次级规模因素,比如说价值因素,比如说贝塔,比如说荣誉,比如说杠杆因素,我们把常见的风格风险因素都考虑进来,然后给它画出一个平行宇宙下面这个公司没有造假的情况下,它收益率曲线应该是什么样子,然后把作为他扣除的这个系统性风险,同时用非系统性风险,比如说这个公司重大资产重组失败,来了三个跌停,这三个跌停要不要扣除掉?然后被告说跌停是我重大重组失败,跟这个我财务造假没关系,所以除了系统性风险之外,还要考虑一些非系统性风险。因此我们就把这些东西做了一个量化模型,这个理论我就不再去看到做一个量化模型,这本质上就性格非常简单,如果是在高新的MBA的课堂上,我认为可能有些校友说我没看到过这个东西可能长得不完全一样,和我们的标记符那种不一样,但是本质上是一样的,我们所有的金融学原理,包括金融市场课,包括其他的资产配置课里面一定会看到类似的这种公式,但本质上这是一个横截面的公式,这是一个表达。一到n也就4600个股票,它的收益率的这么一个解释的这么一个模型,他用的是什么?用的第一把大盘涨跌放进来,第二把行业因此放下来。第三把常见的风格因子,比如说估值、财务质量、量价等因素考虑进来,所以把这些都考虑进来,最后剩下的u长差项就是我们认为我无法解释的东西,那个东西我们把它归,因为由于虚假陈述带来的东西,所以法院要判的就是优残余值带来的损失,看给被告说你要赔给原告,所以这就是我们做的基本的模型,系统性的风险,同时也构造了很多新的因子,比如说行业的因子,除了行业因子之外构建的概念因子,比如充电桩因子等等,细节我就不详细介绍了,其实网上都可以在这个判决书里面详细查到,很多细节也做了很多分析的普及,一切因素的扣除,包括长期性的短期性。我不相信介绍这个模式我们经过很多的实现,其实除了刚才两两个上市公司之外,在交通法院也好,但是在各个地方的法院和甚至高院我们都有实践的例子,发现它第一它的普适性非常好,它可以适用于很多A股的股票,甚至我们现在开始把它转移用到新三板股票,甚至先把它用到债券这个领域里面,所以发现它的吐气性非常好。第二发现它的稳健性非常好,也就是说这个模型的因子的数量,它的增加或者减少并不会大幅度的影响它的模型的稳定性。因为法院在判的时候它是非常重要,它是需要比较稳健的,不是说你这个参数一条,本来要赔10个亿,现在赔100万,这个是不允许容许出现的,因为它一定要是非常稳健的,所以稳健就非常好。那么我们刚才讲的模型大家如果注意到的话,它本质上是一个线性模型,也就是一个线性的方式。为什么没有用机器学习的模型呢?很重要的一点原因是什么?法院在办案的过程当中,它是必须要具有可解释性,也就是说法官必须要能够给被告解释说我为什么这么判,你为什么这么烦你?如果是一个黑匣子进取说我也不知道什么,反正你要发10个亿那,这就是模型说的,这个是很难做出1个让人信服的这么1个1个1个决定而判决的。所以因为这个原因,其实法院不光是中国,在全世界都是这样,美国也是这样子的,很少用机器学习模型,因为这个机器学习模型是黑匣子,无法让被告心服口服。我们这个线性模型可以告诉你,为什么你的股价这么变动,是因为你的市值规模是多大,你的你的波动率是多少,导致了你的收益率的情况,所以这个是非常好的可解释性。好吧,所以损失计算流程我也不详细,介绍啊这个里面其实我们看到他无非就是把每天的因子计算好,把这个因子计算好,然后把它做一个横截面的回馈来计算。那么这个图里面蓝色的就是这家公司的实际的股票的价格,橘黄色的是我们模拟出来的,在平行世界在平行另外一个平行世界当中,在这个平行世界当中,股价仅仅由大盘行业和我们建模的这些系统性因素决定,所以黄色这条线就是我们的系统性的叫做平行世界里面的股价走势。这是价格曲线,我们根据数据画出来一条黄色的线,那么同时我们对实施监督的机主任根据法院的决定,然后通过中证登,从中在中证通过中证登,把所有投资人的交易数据按笔拿出来,做一个分析,就可以计算出来。我们根据他名义损失比例,比如说我们前面的例子里面,投资人的名义损失比例就是70%,减去模拟损失比例,模拟损失比例是什么?在一个平行宇宙当中,他这个公司没有财务造假的话,这个股价应该是下阶段把它给扣掉,再乘以你的名义买入成本就得出来投资的差额的净,比如说我们这边有的是一个实际例子,中意达的投资人,对吧?我们看得出来民意损失比例是什么,也就是投资人买入股票,没卖一直持有到基准日,他的损失民意损失是21.62%,也就亏损20%点多。他找这个公司索赔就是索赔,说你给我赔21%因为什么,我买了97,000块钱,亏了21%,现在只价值只有76,000块钱。这么回事根据我们的模拟,我们算出来,在另外一个平行宇宙当中,假如这公司没有财务欺诈的话,这个股价应该只跌1.75 1.75%,也就是说我们21.62-1.75,这个是我们根据模型算出来这家被告应该赔偿的金额。这个我刚才讲的量化模型在证券投资里面这么一个一个计算的事例。那么实际上我们做的这个东西其实是2020年第一次做的,那么后来2021年也拿到了金融法院的17家课题的这么一个荣誉,那么后来这个事情影响非常大,所以全国各地的法院都在找我,原因是什么?我们讲现在证券诉讼越来越多,因为尤其是新证券法下对控股股东对董监高他财务上讲的责任其实定得非常严,在这种情况下诉讼一定会越来越多,同时被告讲的那些原因也都是合理的,对吧?但是你亏了70%,但是其中5050%跟我一点关系都没有,是行业性的亏损。你买了股票,你买了这个行业股票都要怎么亏这么多,那么他就说我这个经营不善,我市值规模很小,这个期间这股价是怎么跌的,所以这都要考虑进来。所以最高人民法院看到我们做的这些研究和实践之后,其实在2022年1月21号,它发布了一个新的叫做关于审理证券市场虚假陈述,侵权民事赔偿案件的若干规定。法式第二号二二十新的规定里面,其实明确的就红花领矿出来的被告能够举证证明原告的损失,部分或者全部是由他来操纵证券市场,证券市场的风险,证券市场对特定事件的过度反应,另外经营环境等因素导致的应该予以扣除。其实就是把我们做的这些事情把它变成了一个司法解释的司法解释的一部分。其实我们看到右边人民司法这张是我们在他公众号,接下来他们也提到上海金融法院与,上海高新开展合作,像系统性风险和非系统性风险都作为考量因素,也就是采用我们量化的因子模型来进行的扣除。所以这个是我们其实讲的量化的因子模型在证券诉讼里面的应用。那么其实广义上来说,现在有个词语叫做司法科技太多,基本上说是司法领域里面现在其实越来越多的借助于科技手段来做损失核定,包括其他的判决,我给大家举另外一些例子,我们做的另外一个案子是有一个有几个自然人操纵骨架,操纵骨架时间长达两年多,操纵骨架,那么操纵骨架那么认定它已经操纵股价的事实已经成立了,它的犯罪事实成立。他在这两年半期间,经常性的通过多个账户同时交易来操纵股价,那么在这段期间买入或买入股票,同时卖出股票或者不卖出,发生了带来损失的这种投资人就可以起诉这些操纵股价的人,要求他来赔偿。但问题是在于说操纵股价,它两年半的时间里面并不是每天都在操纵,他可能做一次自己的操作股价的事情,休息一个多月,再来一次,所以它并不是每天都操纵,那么现在法院要决定的是不是问题就是说过去这两年多损失是不是都应该有这几个人操纵股价的人来承担?所以我们给他做了一个很有意思的模型,做了一个脉冲模型,也就是说我们来判定说。
说话人5:
刚发生。
说话人1:
操纵股价的时候,这个行为对股价的影响力持续时间有多长,我们给他做一个估算,平均是3天还是5天。2020。对吧。
说话人1:
因为你说我操作了一次股价,我十几个账户同时交易。
说话人5:
拉绳子骨架。
说话人1:
我做了这么一次,你不能说未来两个月的股票价单都跟我有关系,是不是?所以他一定是有个时间这个系统,所以我用了一个非常精细的模型来估算股价,受操纵它的一个脉冲的一个函数,所以这也是其实我们把量化研究用在司法实践里面的一个尝试。好的,那么因为时间关系其实我是一个小时的分享,所以我这边就稍微总结一下,因为不管是之前说的听众,也就是金融科技的从业人员或者感兴趣的,还是说我们的MBA项目的校友也好,或者潜在的申请人也好,其实我跟大家分享一个小时是想给大家介绍现代金融,至少在金融市场这个领域其实已经是非常的科技化,那么其实用到大量的量化手段来进行数据的分析,包括投资对吧?包括风控,包括我们刚才讲的正确诉讼,包括其他有大量的应用,那么有可能在一些其他人,比如说你在一级市场领域可能量化做来并不是这么多,比如说你说我做VC,是不是也可以做个量化模型?这个其实在研究的前沿是有些人做研究的,但总体而言它显然并不如二级市场这么天然性的适合量化或者数学模型,因为它的数据量也比较少,频率也不够高,但是现代金融市场包括股票、债券、商品、与其他,野商品其实是大量的量化的东西在发生作用,我相信在座的可能很多人并不是学数学或者数学背景的,那么没关系,我们觉得我们的教育是想给大家提供一个基本的概念上的理解,大家不一定是需要来编程或者理解这个公式,但是一定要有这个概念,比如说知道通常的量化模型在做什么,知道它的短板是什么,知道它的优势是什么,知道它未来的趋势是什么,对吧?再比如说我们中介机构,包括律师,包括会计师对吧?包括券商,在我刚才讲的证券诉讼当中都是直接当事人,对吧?那么在这个过程当中量化模型也好,其他的更加深度的基于数据的分析也好,其实都会起到越来越大的作用,我想这个也是大家可能对高级学院感兴趣的一个重要原因。我希望如果是感兴趣的各位听众的话,其实可以来高兴这边感受一下我们课程的特点和氛围。应该说我刚才介绍的这些内容其实很有特点,一个是学术性非常强,第二是又不仅仅限于学术性,其实我们把大量的用在实践当中,其实现在我们的案子客观来说都已经是接不过来了,就是就这个需求量实在太大,我们可能去掉了80%,因为没有时间来做。好吧,我跟大家的分享就到这,正好3:01一个小时,我把麦克交给永昌。
说话人2:
好的。非常感谢李峰教授的精彩分享,刚才我看到有校友从我们直播间说,感觉又回到了李峰教授的课堂上,我作为校友也是这个感觉就特别幸福。虽然只有短短的一个小时,但是再次感受到了教授的专业睿智以及多层次多元化的思考,从量化的概念研究的深度应用广度,结合最新的科技,大家做了深入的交流,而且我们也可以看到不同于纯学术派的老师李峰老师在应用探索方面也有非常深的一个研究,非常具有现实意义。然后让我们也是更深的思考。那么我们上海高级金融学院以及我们上海高级金融研究院,非常重视最新的科技在金融领域的应用,也是欢迎。那么至于在此领域与探索研究的同学,关注我们上海高金以及上海高金融研究院,那么接下来一个环节大概15分钟的时间,由长期啊研究量化投资的专家,远川研究所的副主编,远川资管报道部总监,远川投资评论出品人张佳宇老师与李峰教授做一个交流。那么接下来有请两位老师。
说话人1:
行。
说话人12:
谢谢李教授刚刚给我们的分享,我可能会从跟资管行业这两年发展的一个角度来跟您探讨一些问题。一个是第一个问题,首先最近几年我们非常肉眼可见,能够看到国内的量化机构的发展是非常非常的迅猛,公募私募都有非常多的这种大量的产品上的探索,也一度出现了不少千亿规模以上的量化私募基金,您觉得整一个趋势背后的本质的原因或者它的驱动力是什么?
说话人1:
对,好的,这个问题非常好,我的理解是这样子的,首先这个背景就是资管和财富管理的需求非常大,这是一个非常清楚的这么一个趋势,我们讲以前可能居民的财富大量放在房地产里面,现在来说不管是跟美国比,还是说是跟自己比,但是跟过去的历史比,那么从配置的角度来说,对股票对债券或者对商大宗商品配置的需求越来越大,这里面就产生了大量的资金的需求。第二个就是说量化,其实这个概念我刚才讲大概10来年前的时候在中国开始兴起,那么经过培育的过去5年其实已经到了相对成熟的一个阶段,也就是说受众大量的投资人或者散户,他对什么量化概念可以接受高净值人群,所以也是进入了一个相对的稳定的这么一个快速增长的期。那么第三点就是说中国的由于市场的特点,由于在资本市场包括机构投资人占比相对较少,包括散户的占比更大,特点导致量化的收益率相对是非常高的,超额远高于在美国市场可以做到超额收益,所以这些都导致了量化,这边直管它规模出现紧绷,出现所谓的千亿的机构,这是我的这么一个你的理解比较严谨的继续的。
说话人12:
对我可能延伸的也想问一下,我们可能更多的在早期去接触一些基金产品也好,资管机构也好,更多的还是以主观多投,我们就讲其实就是炒股票,我用我基本面研究的方式去炒股票,这样一些跟传统的理念比较多,更传统的方式也比较多,我们这两年也发现其实越来越多的机构,我们理解了做基本面的这种主观多头的机构,他们也开始去发力做一些量化的这些模型,量化的这些就投入一些硬件的设施也好,硬件的设备也好,另一方面我们也看到它本身是主打量化投资的这样一些机构,他们也开始慢慢的投入基本面研究的人才,我去找了非常多券商的分析师加入到我的证券研究的团队当中,您怎么看这个融合的趋势?
说话人1:
对,我觉得这个融合还是挺有意思的一个现象,这个相对在比如说美国市场上相对相对少一些情况,那么中国为什么这样子?第一个就是说首先我刚才讲的量化,它收益率其实是非常好的,你就操作非常好,比如说我们比如说500500指针做出来,超额经常都会高到百分之二三十甚至更高三五10,在成熟的资本市场是无法想象的。所以从这意义上讲,做主观投资的人会发现这么一个非常有意思的收益的来源,他肯定有动力来做。另外就是说什么?量化它还有特点,尤其高频量化它交易量比较高,所以券商是特别喜欢这么一个交易模式。那么从这意义上讲,做主观投资或者说传统投资的机构,它有动力来切入这一块。但是第三个原因我想的是中国总体上来说对 Ip的保护就是敬业协议,其实没有比如美国那么严格,所以它很容易的可以挖到一些比如说量化机构的一些核心团队,来搭建这么一个团队,那么在国外就很难做,比如文艺复兴的基本上是不可能有人被挖走。所以这几个原因导致我认为主观机构也来做量化。那么量化机构去做主观投资,就跟刚才我们讲,因为目前的尤其是收益特别好的这些量化机构,大量的依赖于价量引起,那价量引起它是有有容量限制已经有天花板,因为你换手达到了100倍200倍的时候的话,它交易量已经属于天花板。那么在天花板达到之后,它如果达到几百亿上千亿的规模的话,它一定要小办法来嗯多元化它的策略,所以它有可能会往主观的策略的模式上来来进行所谓的融合也好,也是迁移也好,所以这是我理解的这两种趋势的互相融合。当然就是说我们看到1000指数它马上的股指期货或者相应的其他也这么样推出来的话,其实这又给我们所谓量化的赛道扩容了,因为你一旦1000的期货出来也整理出来之后,那么其实它指征也好,对冲也好,它品种就丰富了,原来可能是500为主,这么个原因,所以我想一定是一个也是中国的特有的市场环境下,这一个市场性的行为也是很正常的行为。
说话人12:
对,其实您刚刚也提到了,就我们过去的这些量化的资管机构,它可能更多的是以量价的因子为主,然后它的容量是比较受到限制,可能大家去想到的我扩容的一个方式是我往基本面的赛道上去布局,或者是去拓展我的能力。另外一方面我们也发现有越来越多的随着玩家变多,量化机构之间,他们也开始展开了某种程度上的这种军备竞赛,就是各类的计算机的人才,因为你也提到像国内的竞业,协议没有像国外的这么这么严格或者这么苛刻包括大家在这个GPU甚至超级计算机上的投入都非常大,您怎么看待这样一个大家进入一个军备竞赛的这样一个感谢。
说话人1:
首先其实是很自然是吧?因为我刚才提到的包括传统的机器学习模型,当然更不用说深度学习它的算力,因为随着数据的频率的提高,对算命的要求非常大,所以它一定会是通过 GPU来做一些深度学习计算,包括一些去跟,其他的人包括数据库,包括什么都在效率做得更高,所以这肯定是一个自然的趋势,原因就在于说中国市场的特点,它目前为止是以收益率或者收益特征为第一导向,所以他只看收益率,那么我刚才简单分析过了,其实高频它的策略,它的收益特征是概念上表达比中低频要好,原因它的观测期是日平的,但是它可能是日内交易的,所以它做出来的曲线一定是更好看的,所以中国市场的特点决定了这一定是一个重要的竞争维度。那么比如说我们对比一下美国这个市场就很有特点,你可以做低品的,比如AQ它其实就是做的中低品的,做的收益率非常烂,但不能跟我说,但它的它的规模还是能够保持在千亿美元,不能走,因为它是更多的是一个策略大类的配置的这么一个概念,所以就是说第一我觉得可能是一个趋势,第二就是说我觉得你从除此之外,其实我个人认为大家可能暂时也不要迷信具备竞赛的东西原因是什么?即使在我们日平的数据,甚至于分钟5分钟分钟和5分钟这种数据的频率范围之内,现在做的机器学院模型其实收益率也是可以非常好的,所以我觉得就是说可能所谓的具备竞赛部分原因也是宣传需要。
说话人12:
因为让别人觉得听上去比较高级。
说话人1:
对,其实你要知道我们要流行一些选择了最狠的一些机构,我就不提名字了,也是千亿规模的收益率,去年下半年是一塌糊涂。那么这不是因为其他原因,不是他水平不高,而是说这个不能夸大了所谓的硬件的作用。那么第三个等于说其实就是另外一个叫基本面量化,那么这个方向其实是走的另外一条路了。我不是拼硬件或者这个软件的效率,而是拼的是把传统的投研把它用Excel的表格的方式,或者用相对量化的方式把它表达出来来进行交易,但这个也是一个方向,所以我觉得肯定是个趋势,但是就是说并不是说是你知道事实上我们做的这种计算跟科学计算比起来其实差很远的,就包括大大量的我们知道用超级计算机解决的科学问题,这根本就不是事儿我们做的。
说话人12:
对,其实还有一个比较资管券业大家比较关心的一个中长期的问题,其实现在很多做传统投资或者主观多头的结合,他们有自身的焦虑,就是我们自己再去对比海外,看美国可能我们一拉资产管理规模排名前面基本上都是做像black rock或者是像AQ,这就是公募里面它就是f像v感,然后像私募里面可能就是像AQ二这样一些对冲基金,基本上都是以量化为主或者是被动投资为主的这样一批机构。您觉得国内的这样一个现在整个基金行业的一个发展,会在多长时间内,我们会看到这个量化越来越多的取代主观的这样一个过程。
说话人1:
我觉得这个是看怎么定义量化。
说话人12:
我觉得量化需要。
说话人1:
听得见吗?
说话人12:
听不到。
说话人13:
说话人12:
是我的电现在能听到了。
说话人1:
对明白这个意见,就是说其实说量化取代主观看怎么定义量化。如果你把被动的量化,比如说指数和量化,它有很多是h其实它是当被动的这个量化,所以如果把证据算作量化,当然可以说量化某种上再取代主动了,但是如果你专指那种你以超额阿尔法为例目标的量化来说的话,其实在美国其实也并没有出现所谓取代主观的特点了,因为真正的阿尔法是非常宝贵的,你说做一种 smart贝塔这种做法它量可以做得很大对吧?但是如果你把都算作量化的话,的确是逐渐在取代或者说是比重占比非常大,所以中国什么时候变成那样子,我觉得第一就取决于中国的目前的阿尔法的衰退的是那个时间,我觉得这个量化就就纯粹意义上的阿尔法一定是会衰退的,原因是什么?我刚才讲的随着交易的人越来越多,它一定会消失,对吧?随着散户的逐渐退出,随着机构的逐渐量化,它一定会阿尔法是越来越低的。所以我觉得可能10年之内,我们今天看到的思路的量化,这么好的差额,也就是说你现在做不到20%,你都不好意思跟别人说,我超过20%这种应该是会衰退的。但是我个人感觉可能5~10年。
说话人12:
谢谢谢教授,我们自己从财富管理端感受到了另外一个比如说来自客户或者是来自投资人,他们的一个感受就是量化它整体还是一个偏黑箱的东西,我的策略的可解释性或者它的透明度相对来讲是不是那么高的,也让很多买量化的投资人,他可能对产品的认知上还有能感觉到比较多的这种信息的不对称。我们未来觉得说这个行业里面有没有什么方法可以来尽量的减降低这个问题,或者是解决它。
说话人1:
对所谓信息不对称,就是说它首先我刚才讲的机器学习模型,比如深度学习这些东西,他是个黑匣子,这个问题是永远解决不了,因为它本来就是黑匣子对吧?换句话说你让开发策略人来做策略人来解释,他也没办法很好的解释,所以这个不是我们更要解决的问题,就在于说。
说话人7:
好好再问一下。
说话人1:
量化机构它在实际过程在运行当中它出现了偏离,也就是说他说的做的策略和他实际做的策略出现偏离,这是更大更大的黑匣子的一个问题。那么在这种情况我觉得个人就觉得它一个其实也是需要专业机构来变成一个中间层了,因为高净值的传统的高净值人群,它是没有办法来判断或者分析它的持仓的数据,来根据持仓的数据做归因,来分析它是不是偏离了它宣传的他宣传的策略是什么样子,他宣传的是个无败之中,他宣传的是一件之中,他实际上做的是个什么东西,而这个是非常有一个专业能力的。换句话说高净值人群他要来判断这个是不是真的在黑箱操作在胡乱操作,他是没办法判断,所以这个是一个专业的领域。也就是说对中间层的作用是更加重要的。
说话人12:
就是对我们需要更多的比较专业的这种财富管理机构,我们去对产品有更多的竞价和底层的认知,然后给你的投资人做一层保障。还有最后一个问题,其实和您刚刚提到的您上海高精的多因子量化模型在正确诉讼中的应用有关,您提到我们在在去做一些用这个多因子量化模型来精确核定一些证券成虚假陈述给投资者带来的损失这样一个模型,我自己听下来我觉得非常有意思,然后也觉得有一点,其实比如说很多时候我们看到证券的虚假陈述和股价的操纵,它其实是共生的,或者他不是可以说我这个案件是因为休假成熟按键是因为股价操作,他有的时候可能是这两个因素都占到了一定的比例,我们这一个
说话人13:
说话人12:
多因子量化模型,我们去把这个市场因素排除掉,把风格因素排除掉,把行业因素排除掉了之后,剩下来的它的我们去界定它造成损失的因子,它可能是非常多的东西融合在一起的,我们怎么去拆解这种比较复杂的情况。
说话人1:
这个我们是没法参与的,换句话说是这个意思,我们从股票的变动作为一个整体来看,我们说我们把跟明确的跟财务虚假陈述无关的都扣除掉,尽最大的可能就是扣除大盘,扣除行业扣除风格等等,剩下的我们说无法解释。我们说都算你虚假成熟引起的,当然是不完就不完美的方法,原因是什么?最完美的方法应该是股价变动,直接找出哪一块是由虚假成熟引起的。就是说它一个是从a走到b点,一个从b走到a点,它方向是反的,从我们是扣减法,也就是说我们是逐个排除我们能确定的因素,剩下的模式就是你的虚假手术,但是要倒过来做,其实技术上是很难的,因为就我们无法建模给虚假陈述本身来建模是吧?所以但是我们这个方法虽然不完美,但是它比。
说话人5:
不扣除。
说话人1:
或者说只扣住,大盘其实还是前进的非常多,所以这个就等于说这肯定不是一个完美的方法,我们就是说事实上最后要扣除什么因素,除了我们认为的常见因素之外,其实我们是要跟法院坐下来分析的,包括一个个事件一个事,因为最后是一个法律问题,我们只不过是用金融类语言把它给表达出来,就这个意思。
说话人12:
当时是怎么会有这样一个契机,说想到用这样一个量化,因为我们可能从我们的视角来看,更多的量化模型,我在这个市场里面寻找错误定价,然后或者说寻找阿尔法的机会,是怎么想到说它可以用来放在我们去做证券纠纷的损失裁定上?
说话人1:
对,这个也是机缘巧合的,事实上就是我刚才介绍的被告它供电,因为投资人说你要陪我这么做,他后来说我一我记着他就找到我们,说你们帮我们做个课题研究一下,我们说这个里面有很多因素,股价变成很多因素,其中一个就是它的经营业绩情况,我们把因子放进去,同时把市值规模把动量把波动率都放进去。
说话人5:
他们发现很有意思,其实我在跟法院打交道过程当中,我们发现法官们特别聪明,原因是什么?我们这些我们是用数学来表达自己的思想,他们是不懂数学的,他们用逻辑来表达思想。
说话人1:
所以他们每一步都得逻辑上想通了。所以他们其实非常聪明的,因为真正能够用数学公式来理解一个事情的人,一定是更聪明的人,不够聪明才会这个公式写来写去,所以公式是很简单的,你真的从逻辑上想通了,这就是非常重要,所以这也是机缘巧合,后来我们跟他们合作非常多。
说话人5:
好,谢谢谢谢,李教授今天跟我们的互动也从您这个角度和回答里面受益匪浅。
说话人1:
谢谢啊感谢你们的提问,对就非常感谢。对按照我们这边我就。
说话人2:
好的,感谢李教授,感谢张老师,也是期待我们后续疫情之后线下见面,好,谢谢两位老师可以稍作休息。