tensorflow可视化

tensorflow的可视化是通过summary和tensorboard完成的。以tensorflow运作方式入门为例,可视化主要通过以下步骤完成:

(1)将所有的即时数据整合在一个op中:

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

(2)创建Session会话,并初始化Variables变量:

    # Create a session for running Ops on the Graph.
    sess = tf.Session()

    # Run the Op to initialize the variables.
    init = tf.initialize_all_variables()
    sess.run(init)
(3)创建tf.Summary.FileWriter对象,用于写入包含了图表本身和即时数据具体值的事件文件:
    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.summary.FileWriter(FLAGS.train_dir,
                                            graph_def=sess.graph_def)

(4)运行summary_op,得到即时数据,然后通过add_summary()向FileWriter对象的缓存中存入事件数据

        summary_str = sess.run(summary_op, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)

事件文件写入完毕后,就可以打开一个TensorBoard查看即时数据的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值