二维坐标与索引的转换

欢迎访问我的博客首页


1. 二维坐标与索引的转换

  有时候需要二维坐标与索引的映射关系。比如在机器人定位问题中,一般把机器人初始位置定为原点,机器人可能向平面的任意方向行走。可以分块保存地图,即把地图分为格子,每个格子保存为一个数据单元。每个格子有一个二维坐标,每个数据单元有一个索引。如果有坐标与索引的映射关系,由坐标可以得出索引,由索引可以得出坐标。
示例图片

1.1 坐标转索引


  • 当 x = y = 0 时, index = 0 。
  • k = max( | x |, | y | ) 。
  • 当 x ≤ \leq y 时,index = 4 k 2 k^2 k2 + 1 - ( 2k + x + y)。
  • 当 x > \gt > y 时,index = 4 k 2 k^2 k2 + 1 + ( 2k + x + y)。
size_t coordinate2index(int x, int y) {
	if(x == 0 && y == 0)
		return 0;
	size_t k = max(abs(x), abs(y));
	if(x > y)
		return 4 * k * k + 1 + 2 * k + x + y;
	else
		return 4 * k * k + 1 - 2 * k - x - y;
}

1.2 索引转坐标


  • 当 index = 0 时,x = y = 0。
  • k = (int) ( i n d e x \sqrt{index} index +1) / 2。
  • 当 (float) i n d e x \sqrt{index} index ≤ \leq (int) 2k 时,x + y = 4 k 2 k^2 k2 + 1 - index - 2k。
    -当 x + y ≥ \geq 0 时,y = k。
    -当 x + y < \lt < 0 时,x = -k。
  • 当 (float) i n d e x \sqrt{index} index > \gt > (int) 2k 时,x + y = index - ( 4 k 2 k^2 k2 + 1 ) - 2k。
    -当 x + y ≥ \geq 0 时,x = k。
    -当 x + y < \lt < 0 时,y = -k。
struct Point {
		Point(int a, int b) :x(a), y(b) {}
		int x, y;
};

Point index2coordinate(size_t index) {
	if(index == 0)
		return Point(0, 0);
	size_t k = (sqrt(index) + 1) / 2;
	if(sqrt(index) > 2 * k) {
		int xAy = index - (4 * k * k + 1) - 2 * k;
		if(xAy < 0) {
			int y = -1 * k;
			int x = xAy - y;
			return Point(x, y);
		}
		else {
			int x = k;
			int y = xAy - x;
			return Point(x, y);
		}
	}
	else {
		int xAy = (4 * k * k + 1) - index - 2 * k;
		if(xAy < 0) {
			int x = -1 * k;
			int y = xAy - x;
			return Point(x, y);
		}
		else {
			int y = k;
			int x = xAy - y;
			return Point(x, y);
		}
	}
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值