欢迎访问我的博客首页。
二维坐标与索引的转换
1. 二维坐标与索引的转换
有时候需要二维坐标与索引的映射关系。比如在机器人定位问题中,一般把机器人初始位置定为原点,机器人可能向平面的任意方向行走。可以分块保存地图,即把地图分为格子,每个格子保存为一个数据单元。每个格子有一个二维坐标,每个数据单元有一个索引。如果有坐标与索引的映射关系,由坐标可以得出索引,由索引可以得出坐标。
1.1 坐标转索引
- 当 x = y = 0 时, index = 0 。
- k = max( | x |, | y | ) 。
- 当 x ≤ \leq ≤ y 时,index = 4 k 2 k^2 k2 + 1 - ( 2k + x + y)。
- 当 x > \gt > y 时,index = 4 k 2 k^2 k2 + 1 + ( 2k + x + y)。
size_t coordinate2index(int x, int y) {
if(x == 0 && y == 0)
return 0;
size_t k = max(abs(x), abs(y));
if(x > y)
return 4 * k * k + 1 + 2 * k + x + y;
else
return 4 * k * k + 1 - 2 * k - x - y;
}
1.2 索引转坐标
- 当 index = 0 时,x = y = 0。
- k = (int) ( i n d e x \sqrt{index} index +1) / 2。
- 当 (float)
i
n
d
e
x
\sqrt{index}
index
≤
\leq
≤ (int) 2k 时,x + y = 4
k
2
k^2
k2 + 1 - index - 2k。
-当 x + y ≥ \geq ≥ 0 时,y = k。
-当 x + y < \lt < 0 时,x = -k。 - 当 (float)
i
n
d
e
x
\sqrt{index}
index
>
\gt
> (int) 2k 时,x + y = index - ( 4
k
2
k^2
k2 + 1 ) - 2k。
-当 x + y ≥ \geq ≥ 0 时,x = k。
-当 x + y < \lt < 0 时,y = -k。
struct Point {
Point(int a, int b) :x(a), y(b) {}
int x, y;
};
Point index2coordinate(size_t index) {
if(index == 0)
return Point(0, 0);
size_t k = (sqrt(index) + 1) / 2;
if(sqrt(index) > 2 * k) {
int xAy = index - (4 * k * k + 1) - 2 * k;
if(xAy < 0) {
int y = -1 * k;
int x = xAy - y;
return Point(x, y);
}
else {
int x = k;
int y = xAy - x;
return Point(x, y);
}
}
else {
int xAy = (4 * k * k + 1) - index - 2 * k;
if(xAy < 0) {
int x = -1 * k;
int y = xAy - x;
return Point(x, y);
}
else {
int y = k;
int x = xAy - y;
return Point(x, y);
}
}
}