欢迎访问我的博客首页。
1. 基本形式
用 x = ( x 1 ; x 2 ; . . . ; x d ) x =(x_1; x_2; ...; x_d) x=(x1;x2;...;xd) 表示研究对象的 d d d 个属性,其中 x i x_i xi 是 x x x 在第 i i i 个属性上的取值。线性模型通过学习得到预测函数
f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w d x d + b , (3.1) f(x) = w_1x_1 + w_2x_2 + ... + w_dx_d + b, \tag{3.1} f(x)=w1x1+w2x2+...+wdxd+b,(3.1)
一般用向量形式写成
f ( x ) = w T x + b , (3.2) f(x) = w^Tx + b, \tag{3.2} f(x)=wTx+b,(3.2)
其中 w = ( w 1 ; w 2 ; . . . ; w d ) w=(w_1; w_2; ...; w_d) w=(w1;w2;...;wd)。 w w w 和 b b b 就是要学习的参数。
线性模型的学习过程是一个函数拟合过程,但它也可以用来分类,下面是详细内容。
2. 线性回归
线性回归可以理解为拟合函数。比如公式 3.1 中 d = 1 d=1 d=1 时, f ( x ) f(x) f(x) 就是二维空间中的一元一次函数,只需要两个点就可以求出 w 1 w1 w1 和 b b b。