常见问题
1. 梯度消失与爆炸、过拟合、不收敛
1. 梯度消失与爆炸
梯度消失:梯度传不到浅层网络,只有深层网络学习。导致深度网络不深,难以收敛。
梯度爆炸:梯度值过大,导致网络难以收敛甚至出现 NaN 值。
- 抑制梯度消失:使用 ReLU 这种无界的激活函数。使用残差结构。
- 同时抑制梯度消失与爆炸:使用预训练参数。特征正则化。权重正则化。
2. 过拟合
过拟合的症状:模型在训练集上效果好,在测试集上效果差,即模型泛化能力弱。
过拟合的原因:复杂的模型拟合能力过强,对训练集中的抽样误差也进行了很好地拟合。
- 使用权重衰减,让权重更小、更稀疏。
- 训练数据少。增加训练数据,如进行数据增广。
- 模型过于复杂。减少网络层数和神经元个数。
- 在验证误差不下降时及时停止训练。
- 使用 Dropout。
- 多任务学习。