常见问题

1. 梯度消失与爆炸、过拟合、不收敛


1. 梯度消失与爆炸

  梯度消失:梯度传不到浅层网络,只有深层网络学习。导致深度网络不深,难以收敛。
  梯度爆炸:梯度值过大,导致网络难以收敛甚至出现 NaN 值。

  1. 抑制梯度消失:使用 ReLU 这种无界的激活函数。使用残差结构。
  2. 同时抑制梯度消失与爆炸:使用预训练参数。特征正则化。权重正则化。

2. 过拟合

  过拟合的症状:模型在训练集上效果好,在测试集上效果差,即模型泛化能力弱。
  过拟合的原因:复杂的模型拟合能力过强,对训练集中的抽样误差也进行了很好地拟合。

  1. 使用权重衰减,让权重更小、更稀疏。
  2. 训练数据少。增加训练数据,如进行数据增广。
  3. 模型过于复杂。减少网络层数和神经元个数。
  4. 在验证误差不下降时及时停止训练。
  5. 使用 Dropout。
  6. 多任务学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值