所有
文章平均质量分 81
所有
紫金山赵火龙
这个作者很懒,什么都没留下…
展开
-
opencv imshow函数显示float64格式错误
在模拟高斯光斑的过程中,手动生成了下图所示的图像,使用cv2.imwrite()函数保存正常。然而在使用cv2.imshow()函数显示时却出现错误原因是使用高斯函数公式生成的图像,灰度值为float64格式,而cv2.imshow()不支持float64,会自动转换,参考opencv文档:imshow(winname, mat) -> None. The function may scale the image, depending on its depth:. - If the i原创 2020-05-29 17:52:39 · 1706 阅读 · 1 评论 -
Obsidian使用ddnsto穿透nas的webdav功能实现跨平台同步
我的obsidian里面基本都是文本和图片,4M的带宽完全够用,整个仓库同步一次可能要2分钟左右,速度肯定没有坚果云那么快,但是解除了api访问数量的限制,而且我也没有在一台设备上写完笔记立刻推到另一台设备的需求,所以用起来体验还是可以的。之前一直用坚果云的webdav功能做obsidian的跨平台同步(Windows,Ubuntu,iOS),但是今天在新的工作机上部署obsidian时,发现一次同步的文件数量超过了坚果云的限制(付费用户好像是500次),因此想换个平台来考虑。原创 2024-02-05 14:57:26 · 1467 阅读 · 1 评论 -
【OpenCV3.2】Detection of ArUco Markers
姿态估计(Pose estimation)在计算机视觉领域扮演着十分重要的角色:机器人导航、增强现实以及其它。这一过程的基础是找到现实世界和图像投影之间的对应点。这通常是很困难的一步,因此我们常常用自己制作的或基本的marker来让这一切变得更容易。 最为流行的一个途径是基于二进制平方的标记。这种Marker的主要便利之处在于,一个Marker提供了足够多的对应(四个角)来获取相翻译 2017-06-26 14:20:06 · 9773 阅读 · 10 评论 -
《图像式远程目标微小位移监测系统的设计与实现》精度分析
2.5 影响系统精度和可靠性的主要因素及其分析大气衰减 影响:CCD接收到的信号强度低于最低照度限制,目标与背景无法分辨 解决: 采用处于大气透射窗口波长的激光器作为光源 通过功率预算选择合适的光源功率,使标靶处出射的激光能量在经历较大衰减后仍可使用 大气湍流 影响:图像中每次得到的目标中心位置存在随机漂移 解决: 采集多幅图像求平均 拍摄环境 影响:白天/黑夜;晴天/雨天 解决: 在非测量区建立高精度的参考目标 系统部件精度.原创 2020-07-22 14:18:51 · 286 阅读 · 0 评论 -
Python opencv将一张图片任意N等分并保存
import cv2src = cv2.imread('100_0124_0013_pre_disaster.JPG', -1)cnt = 1num = 1sub_images = []sub_image_num = 4src_height, src_width = src.shape[0], src.shape[1]sub_height = src_height // sub_image_numsub_width = src_width // sub_image_numfor j in.原创 2020-05-26 09:40:51 · 3544 阅读 · 0 评论 -
全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别 笔记
主要代码参考了https://github.com/datawhalechina/team-learning-cv/tree/master/DefectDetection的baseline,使用的YOLOv5系列模型,关于源码的注释在YOLOV5训练代码train.py注释与解析记录一下遇到的问题:1、数据预处理问题train.sh文件中,第二步使用了process_data_yolo.py,源码中关于数据集存放位置存在问题,只写了val的处理,没写train的处理,所以生成的process原创 2021-02-18 21:11:24 · 1947 阅读 · 15 评论 -
论文笔记《Combining Events and Frames Using Recurrent Asynchronous Multimodal Networks for Monocular ...》
最近在学习DVS相关的算法,读到这篇把event和frame结合的论文,找到了他们在github上开源的代码。然而这个work的开源并不完全,包括这篇work前面的《Learning Monocular Dense Depth from Events》,开源的代码实际上隐藏了大量的东西。我本来是想复现这一篇的,结果发现所有训练的细节都被隐藏掉,用新repo里的代码不能跟他提供的权重匹配,要复现的话整个训练代码要重写,所以选择了他们最新的代码几乎完整的工作。这个repo整体上代码比较完整,主要问题有2原创 2022-01-05 16:13:45 · 3187 阅读 · 9 评论 -
pytorch转tensorRT踩的几个小坑
1、版本不匹配[E] [TRT] Layer:Where_51's output can not be used as shape tensor.[E] [TRT] Network validation failed.[E] Engine creation failed.[E] Engine set up failed.这实际是由于pytorch与TensorRT版本不匹配,我的TensorRT是7.0,pytorch应该是1.4,但我用了1.7因此需要用1.7重新读取权重文件,然后用老原创 2020-12-20 16:34:10 · 4960 阅读 · 3 评论 -
xView2比赛冠军代码解读
代码地址:https://github.com/vdurnov/xview2_1st_place_solution模型训练中用到了混合精度训练工具Nvidia apex和图像增强工具imgaug目录1、readme1、readme权重文件https://vdurnov.s3.amazonaws.com/xview2_1st_weights.zip数据清洗本次比赛的数据集非常完善,未发现有任何问题。使用json文件创建mask图像,将“un-classified”标签归到“no原创 2021-01-22 18:38:32 · 3862 阅读 · 10 评论 -
x64环境下_findnext()函数报错——0xC0000005: 写入位置 0xFFFFFFFFDF47C5A0 时发生访问冲突
最近在搞单目相机位姿估计,相机标定参考了【OpenCV3学习笔记 】相机标定函数 calibrateCamera( ) 使用详解(附相机标定程序和数据)提供的代码。/*@param File_Directory 为文件夹目录@param FileType 为需要查找的文件类型@param FilesName 为存放文件名的容器*/void getFilesName(string &...原创 2019-05-05 11:21:10 · 1195 阅读 · 4 评论 -
Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA 2018学习笔记(0)——前言
前言计算机视觉正在彻底改变各种行业,OpenCV是使用最广泛的计算机视觉工具,能够使用多种编程语言。如今,需要在计算机视觉中实时处理大图像,这对于OpenCV本身很难处理。在这个问题上图形处理单元(GPU)和CUDA可以提供帮助。因此,本书提供了有关将OpenCV与CUDA集成到实际应用中的详细概述。首先介绍使用CUDA编程GPU,这对于从未使用过GPU的计算机视觉开发人员来说非常重要。然后通...翻译 2019-06-25 14:58:40 · 1407 阅读 · 1 评论 -
百度Apollo自定义安装第三方库(以libtorch为例)
百度Apollo是一个非常优秀的自动驾驶框架,但我们平时在开发中也会遇到各种原repo没有处理的问题。笔者近期想用pytorch的C++前端推理模型,但是遇到了libtorch版本与pytorch版本不匹配的问题,因此想自己安装一个新版本的libtorch。首先找到Apollo的docker是怎么安装libtorch或其他第三方库的。在/apollo/docker/build/installers文件夹下面,可以看到非常多的install_***.sh,这些就是安装第三方库的脚本。原始的install_li原创 2022-07-05 16:55:58 · 1086 阅读 · 2 评论 -
记录pyinstaller打包过程中遇到的坑
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...原创 2019-07-31 15:21:11 · 2729 阅读 · 1 评论 -
Python实现任意多边形的最大内切圆算法
参考Matlab计算轮廓内切圆初衷是为了求裂缝的最大宽度直接上代码import randomimport cv2import mathimport numpy as npfrom numpy.ma import cos, sinimport matplotlib.pyplot as pltdef max_circle(f): img = cv2.imre...原创 2020-04-18 16:01:42 · 5529 阅读 · 16 评论 -
百度Apollo自定义模块发布——使用Python语言(bazel编译Python模块)
Binary vs Component首先说明下,Apollo的核心概念是组件,通过组件可以实现资源的自动管理和调度。Cyber RT中只能使用C++语言实现Component,Python版的API只能用来写传统的二进制可执行文件,参考官方文档中这两种方式的区别:2. Binary vs ComponentThere are two options to use Cyber RT framework for applications:Binary based: the applicati原创 2022-05-31 16:01:47 · 2080 阅读 · 2 评论 -
scipy.optimize.curve_fit 拟合多维曲面问题
在做模板匹配算法过程中,想要通过拟合高斯曲面的方式实现亚像素精度。初始代码如下# 创建一个函数模型用来生成数据 def func1(x, a, b, c, d): r = a * np.exp(-((x[0] - b) ** 2 + (x[1] - d) ** 2) / (2 * c ** 2)) return r # 生成原始数据 x1 = np.linspace(0, 10, 10).reshape(1, -1) x2 = np.l原创 2020-05-25 16:10:53 · 8108 阅读 · 0 评论 -
pytorch踩坑,TypeError: expected seqence object with len>=0 or a single integer
在看Faster-R-CNN复现代码(https://blog.csdn.net/weixin_44791964/article/details/105739918)的时候,发现推理阶段报错,Dataparallel无法gather参考https://discuss.pytorch.org/t/nn-dataparallel-typeerror-expected-sequence-object-with-len-0-or-a-single-integer/97082/23后发现,问题出在网络输出的Ten原创 2021-01-12 17:07:39 · 3194 阅读 · 3 评论 -
Windows10子系统WSL位置迁移问题
最近想体验下世界上最好的Linux发行版Win10(bushi),拿来深度学习炼丹,所以参考了在WSL2中使用CUDA提到的方法安装。列举下遇到的问题:1 Windows预览版本没响应按理说在设置-更新和安全-Windows预览体验计划里面注册后,就能直接更新insider preview版本的操作系统,但是我试了几次都没用,所以直接去微软官网下载iso镜像https://www.microsoft.com/en-us/software-download/windowsinsiderprevie原创 2021-02-15 00:29:17 · 4461 阅读 · 5 评论 -
百度Apollo使用bazel编译C++ Boost依赖出现undefined reference to `boost::python::api::object::object(boost::pyth
因为一些原因,楼主想在Apollo自动驾驶框架里使用Boost.python工具来用C++ 调用Python,从网上找了个例子想编译下试试。看报错信息大概意思是boost找不到包里的Python库原创 2022-06-23 10:15:04 · 1749 阅读 · 0 评论 -
Visual Studio 2015编写CUDA关键字高亮并自动补全
第一步,是在vs2015里面设置vc++文件支持.cu;cuh;文件。方法:工具->选项->文本编辑器->文件扩展名。得到如图所示的界面:注意,在右侧可以添加vc++类型的文件扩展名,这是我的设置效果,操作就不用细说了。第二步,是设置visual assist的目录。在小番茄的c/c++directory里面,选择custom选项,然后包含你的cuda的sdk目录,效果...原创 2019-07-23 14:34:00 · 4404 阅读 · 0 评论