第一题
求出数组中两个不重叠的连续子数组的最大和。
输入:
10
1 -1 2 2 3 -3 4 -4 5 -5
输出:
13
子串为:[2 2 3 -3 4]、[5]
求最大子序和的升级版,实质上就是将数组分成两个数组,分别求出最大子序和,之后再求和,求出最大值.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <limits.h>
int max(int a,int b)
{
return a>b?a:b;
}
//用两个dp数组,一个正方向,一个逆方向,并把每个下标对应的最大子序和存储在对应的maxNum数组中
int solve(int* data,int N)
{
int dp[N];
int Inv_dp[N];
dp[0]=data[0];
int maxNum[N];
int Inv_maxNum[N];
maxNum[0]=data[0];
//dp[i]:以第 i 个数结尾的「连续子数组的最大和」
//maxNum[i]:前i个数的最大子序和
for(int i=1;i<N;i++)
{
dp[i]=max(dp[i-1]+data[i],data[i]);
maxNum[i]=max(dp[i],maxNum[i-1]);
}
//Inv_dp[i]:逆序,倒着看,以第i个数为结尾的最大和&#