DeepPose: Human Pose Estimation via Deep Neural Networks论文翻译

本文介绍了一种级联网络架构,该架构通过多个阶段逐步细化图像处理结果。第一阶段获得图像的大致位置信息,后续阶段则进一步精确这些信息。所有阶段采用相同的网络架构,但学习不同的参数。

翻译点击链接获取

基本思想
级联网络架构:在第一阶段将图像输入后得到大致位置,在之后的阶段利用相同的网络架构得到更精细的结果。对级联的所有阶段使用相同的网络架构,但学习不同的网络参数。其中网络架构使用的是Alex,所不同的是loss函数,AlexNet是用于分类的,而本文的架构是用于回归位置的。

其中的AlexNet网络架构图见论文
截取出论文中的架构图:其中有一处错误,输入应该是227*227
这里写图片描述
对于每一层的参数个数等信息见下表:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值