傅里叶变换与拉普拉斯变换

傅里叶变换与拉普拉斯变换

1、欧拉公式

根据泰勒展开式可知:
e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + 1 4 ! x 4 + . . . s i n ( x ) = x − 1 3 ! x 3 + 1 5 ! x 5 + . . . c o s ( x ) = 1 − 1 2 ! x 2 + 1 4 ! x 4 + . . . \begin{aligned}&e^{x}=1+x+\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}+\frac{1}{4!}x^{4}+...\\ &sin(x)=x-\frac{1}{3!}x^{3}+\frac{1}{5!}x^{5}+...\\ &cos(x)=1-\frac{1}{2!}x^{2}+\frac{1}{4!}x^{4}+...\end{aligned} ex=1+x+2!1x2+3!1x3+4!1x4+...sin(x)=x3!1x3+5!1x5+...cos(x)=12!1x2+4!1x4+...
x = i θ x=i\theta x=iθ带入 e x e^{x} ex中可得:
e i θ = 1 + i θ + 1 2 ! ( i θ ) 2 + 1 3 ! ( i θ ) 3 + 1 4 ! ( i θ ) 4 + . . . = ( 1 − 1 2 ! θ 2 + 1 4 ! θ 4 + . . . ) + i ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 ) + . . . = c o s θ + i s i n θ \begin{aligned}e^{i\theta}&=1+i\theta+\frac{1}{2!}(i\theta)^{2}+\frac{1}{3!}(i\theta)^{3}+\frac{1}{4!}(i\theta)^{4}+...\\ &=(1-\frac{1}{2!}\theta^{2}+\frac{1}{4!}\theta^{4}+...)+i(\theta-\frac{1}{3!}\theta^{3}+\frac{1}{5!}\theta^{5})+...\\ &=cos\theta+isin\theta\end{aligned} eiθ=1+iθ+2!1(iθ)2+3!1(iθ)3+4!1(iθ)4+...=(12!1θ2+4!1θ4+...)+i(θ3!1θ3+5!1θ5)+...=cosθ+isinθ
故有:
e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ
θ = π \theta=\pi θ=π θ = 2 π \theta=2\pi θ=2π时分别有:
e i π = − 1 e i 2 π = 1 \begin{aligned}&e^{i\pi}=-1\\ &e^{i2\pi}=1\end{aligned} e=1ei2π=1

2、傅里叶级数(FS)

对于周期为 T T T连续函数,有:
x ( t ) = a 0 2 + ∑ n = 1 + ∞ ( a n c o s ( 2 n π T t ) + b n s i n ( 2 n π T t ) ) x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{+\infty}(a_{n}cos(\frac{2n\pi}{T}t)+b_{n}sin(\frac{2n\pi}{T}t)) x(t)=2a0+n=1+(ancos(T2t)+bnsin(T2t))
其中:
a n = 2 T ∫ − T 2 T 2 x ( t ) c o s ( 2 n π T t ) d t b n = 2 T ∫ − T 2 T 2 x ( t ) s i n ( 2 n π T t ) d t \begin{aligned}a_{n}&=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)cos(\frac{2n\pi}{T}t)dt\\ b_{n}&=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)sin(\frac{2n\pi}{T}t)dt\end{aligned} anbn=T22T2Tx(t)cos(T2t)dt=T22T2Tx(t)sin(T2t)dt
根据欧拉公式有:
c o s θ = e i t + e − i t 2 s i n θ = e i t − e − i t 2 i cos\theta=\frac{e^{it}+e^{-it}}{2}\\sin\theta=\frac{e^{it}-e^{-it}}{2i} cosθ=2eit+eitsinθ=2ieiteit
将上式带入傅里叶级数中可得:
x ( t ) = a 0 2 + ( a 1 c o s ( 2 π T t ) + b 1 s i n ( 2 π T t ) ) + . . + ( a n c o s ( 2 n π T t ) + b n s i n ( 2 n π T t ) ) = a 0 2 + ( a 1 − i b 1 2 e i 2 π T t + a 1 + i b 1 2 e − i 2 π T t ) + . . + ( a n − i b n 2 e i 2 n π T t + a n + i b n 2 e − i 2 n π T t ) = c 0 + ( c 1 e i 2 π T t + c − 1 e − i 2 π T t ) + . . + ( c n e i 2 n π T t + c − n e − i 2 n π T t ) \begin{aligned}x(t)&=\frac{a_{0}}{2}+(a_{1}cos(\frac{2\pi}{T}t)+b_{1}sin(\frac{2\pi}{T}t))+..+(a_{n}cos(\frac{2n\pi}{T}t)+b_{n}sin(\frac{2n\pi}{T}t))\\ &=\frac{a_{0}}{2}+(\frac{a_{1}-ib_{1}}{2}e^{i\frac{2\pi}{T}t}+\frac{a_{1}+ib_{1}}{2}e^{-i\frac{2\pi}{T}t})+..+(\frac{a_{n}-ib_{n}}{2}e^{i\frac{2n\pi}{T}t}+\frac{a_{n}+ib_{n}}{2}e^{-i\frac{2n\pi}{T}t})\\ &=c_{0}+(c_{1}e^{i\frac{2\pi}{T}t}+c_{-1}e^{-i\frac{2\pi}{T}t})+..+(c_{n}e^{i\frac{2n\pi}{T}t}+c_{-n}e^{-i\frac{2n\pi}{T}t})\end{aligned} x(t)=2a0+(a1cos(T2πt)+b1sin(T2πt))+..+(ancos(T2t)+bnsin(T2t))=2a0+(2a1ib1eiT2πt+2a1+ib1eiT2πt)+..+(2anibneiT2t+2an+ibneiT2t)=c0+(c1eiT2πt+c1eiT2πt)+..+(cneiT2t+cneiT2t)
即:
x ( t ) = ∑ n = − ∞ + ∞ c n e i 2 n π T t x(t)=\sum_{n=-\infty}^{+\infty}c_{n}e^{i\frac{2n\pi}{T}t} x(t)=n=+cneiT2t
其中:
c n = { a n − i b n 2 , n = − ∞ , . . . , − 3 , − 2 , − 1 a 0 2 , n = 0 a n + i b n 2 , n = 1 , 2 , . . . , + ∞ c_{n}=\begin{aligned}\begin{cases}\frac{a_{n}-ib_{n}}{2},&n=-\infty,...,-3,-2,-1\\ \frac{a_{0}}{2},&n=0\\ \frac{a_{n}+ib_{n}}{2},&n=1,2,...,+\infty\end{cases}\end{aligned} cn= 2anibn,2a0,2an+ibn,n=,...,3,2,1n=0n=1,2,...,+
c n c_{n} cn为复数,一般称为傅里叶系数,平时对频域的变换,改变的就是 c n c_{n} cn

3、傅里叶变换(FT)

由傅里叶级数公式有:
c k e i 2 k π T t = x ( t ) − ∑ n = − ∞ , n ≠ k + ∞ c n e i 2 n π T t c_{k}e^{i\frac{2k\pi}{T}t}=x(t)-\sum_{n=-\infty,n≠k}^{+\infty}c_{n}e^{i\frac{2n\pi}{T}t} ckeiT2t=x(t)n=,n=k+cneiT2t
两边同时乘以 e − i 2 k π T t e^{-i\frac{2k\pi}{T}t} eiT2t可得:
c k = x ( t ) e − i 2 k π T t − ∑ n = − ∞ , n ≠ k + ∞ c n e i 2 ( n − k ) π T t c_{k}=x(t)e^{-i\frac{2k\pi}{T}t}-\sum_{n=-\infty,n≠k}^{+\infty}c_{n}e^{i\frac{2(n-k)\pi}{T}t} ck=x(t)eiT2tn=,n=k+cneiT2(nk)πt
两边同时对 t t t积分可得:
∫ − T 2 T 2 c k d t = ∫ − T 2 T 2 x ( t ) e − i 2 k π T t d t − ∑ n = − ∞ , n ≠ k + ∞ ∫ − T 2 T 2 c n e i 2 ( n − k ) π T t d t \int_{-\frac{T}{2}}^{\frac{T}{2}} c_{k}dt=\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)e^{-i\frac{2k\pi}{T}t}dt-\sum_{n=-\infty,n≠k}^{+\infty}\int_{-\frac{T}{2}}^{\frac{T}{2}}c_{n}e^{i\frac{2(n-k)\pi}{T}t}dt 2T2Tckdt=2T2Tx(t)eiT2tdtn=,n=k+2T2TcneiT2(nk)πtdt
计算 ∫ − T 2 T 2 c n e i 2 ( n − k ) π T t d t \int_{-\frac{T}{2}}^{\frac{T}{2}}c_{n}e^{i\frac{2(n-k)\pi}{T}t}dt 2T2TcneiT2(nk)πtdt,有:
∫ − T 2 T 2 c n e i 2 ( n − k ) π T t d t = T c n 2 π ( n − k ) e i 2 ( n − k ) π T t ∣ − T 2 T 2 = T c n 2 π ( n − k ) ( e i π ( n − k ) − e − i π ( n − k ) ) \begin{aligned}\int_{-\frac{T}{2}}^{\frac{T}{2}}c_{n}e^{i\frac{2(n-k)\pi}{T}t}dt&=\frac{Tc_{n}}{2\pi(n-k)}e^{i\frac{2(n-k)\pi}{T}t}|_{-\frac{T}{2}}^{\frac{T}{2}}\\ &=\frac{Tc_{n}}{2\pi(n-k)}(e^{i\pi(n-k)}-e^{-i\pi(n-k)})\end{aligned} 2T2TcneiT2(nk)πtdt=2π(nk)TcneiT2(nk)πt2T2T=2π(nk)Tcn(e(nk)e(nk))
e i π ( n − k ) − e − i π ( n − k ) = 2 i s i n ( π ( n − k ) ) = 0 e^{i\pi (n-k)}-e^{-i\pi (n-k)}=2isin(\pi(n-k))=0 e(nk)e(nk)=2isin(π(nk))=0可得:
∫ − T 2 T 2 c n e i 2 ( n − k ) π T t d t = 0 \int_{-\frac{T}{2}}^{\frac{T}{2}}c_{n}e^{i\frac{2(n-k)\pi}{T}t}dt=0 2T2TcneiT2(nk)πtdt=0
因此:
c n = 1 T ∫ − T 2 T 2 x ( t ) e − i 2 n π T t d t c_{n}=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)e^{-i\frac{2n\pi}{T}t}dt cn=T12T2Tx(t)eiT2tdt
其中, T T T为函数 x ( t ) x(t) x(t)的周期,取角频率 w = 2 π T w=\frac{2\pi}{T} w=T2π,则:
c n = 1 T ∫ − T 2 T 2 x ( t ) e − i n w t d t c_{n}=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)e^{-inwt}dt cn=T12T2Tx(t)einwtdt
对于非周期函数,我们可以认为其是一个周期为无穷大的周期函数,即认为 T → ∞ T\rightarrow\infty T,此时有:
c n = 1 T ∫ − ∞ + ∞ x ( t ) e − i n w t d t c_{n}=\frac{1}{T}\int_{-\infty}^{+\infty}x(t)e^{-inwt}dt cn=T1+x(t)einwtdt
T → ∞ T\rightarrow\infty T时, c n = 0 c_{n}=0 cn=0,此时对 x ( t ) x(t) x(t)的频域分析将毫无意义,因此我们对 c n c_{n} cn不包括 1 T \frac{1}{T} T1的部分进行分析,即令 c n = 1 T X ( n w ) c_{n}=\frac{1}{T}X(nw) cn=T1X(nw),其中 X ( w ) = ∫ − ∞ + ∞ x ( t ) e − i w t d t X(w)=\int_{-\infty}^{+\infty}x(t)e^{-iwt}dt X(w)=+x(t)eiwtdt
w = 2 π T , c n = 1 T X ( n w ) w=\frac{2\pi}{T},c_{n}=\frac{1}{T}X(nw) w=T2π,cn=T1X(nw)代入 x ( t ) = ∑ n = − ∞ + ∞ c n e i 2 n π T t x(t)=\sum_{n=-\infty}^{+\infty}c_{n}e^{i\frac{2n\pi}{T}t} x(t)=n=+cneiT2t中可得:
x ( t ) = 1 T ∑ n = − ∞ + ∞ X ( n w ) e i 2 n π T t = w 2 π ∑ n = − ∞ + ∞ X ( n w ) e i n w t \begin{aligned}x(t)&=\frac{1}{T}\sum_{n=-\infty}^{+\infty}X(nw)e^{i\frac{2n\pi}{T}t}\\ &=\frac{w}{2\pi}\sum_{n=-\infty}^{+\infty}X(nw)e^{inwt}\end{aligned} x(t)=T1n=+X(nw)eiT2t=2πwn=+X(nw)einwt
T → ∞ T\rightarrow\infty T w → 0 w\rightarrow0 w0,此时 w = d w w=dw w=dw,对 n w nw nw的求和可以写成积分形式,即:
x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( w ) e i w t d w x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(w)e^{iwt}dw x(t)=2π1+X(w)eiwtdw
由角速度 w w w和频率 f f f的关系式 w = 2 π f w=2\pi f w=2πf可得:
{ X ( f ) = ∫ − ∞ + ∞ x ( t ) e − i 2 π f t d t x ( t ) = ∫ − ∞ + ∞ X ( w ) e i 2 π f t d f \begin{cases}X(f)=\int_{-\infty}^{+\infty}x(t)e^{-i2\pi ft}dt\\ x(t)=\int_{-\infty}^{+\infty}X(w)e^{i2\pi ft}df\end{cases} {X(f)=+x(t)ei2πftdtx(t)=+X(w)ei2πftdf
x ( t ) x(t) x(t) X ( f ) X(f) X(f)称为傅立叶变换对,函数 X ( f ) X(f) X(f)称为 x ( t ) x(t) x(t)的傅里叶变换或傅里叶积分。
傅里叶级数和傅里叶变换的根本区别是被操作的函数是否为周期函数:当被操作函数的周期趋向于无穷大,傅里叶级数“密集”成傅里叶变换;当被操作函数的周期从无穷大变成有限值时,傅里叶变换退化成傅里叶级数。所以,其实傅里叶级数只是傅里叶变换的一种特殊情况,或者说傅里叶变换是傅里叶级数的推广。

4、离散傅里叶变换(DFT)

4.1、离散时间傅里叶变换(DTFT)

我们对现实中的信号进行采集和测量,一般会每隔 T s T_{s} Ts采集一次信号将其变为离散的信号,即 x ( t ) → x t [ n ] x(t)\rightarrow x_{t}[n] x(t)xt[n],其中 t = t 0 + n ∗ T s t=t_{0}+n*T_{s} t=t0+nTs,因此由 X ( f ) = ∫ − ∞ + ∞ x ( t ) e − i 2 π f t d t X(f)=\int_{-\infty}^{+\infty}x(t)e^{-i2\pi ft}dt X(f)=+x(t)ei2πftdt可得其离散形式为:
X ( f ) = T s ∑ n = − ∞ + ∞ x t [ n ] e − i 2 π f ( t 0 + n T s ) \begin{aligned}X(f)&=T_{s}\sum_{n=-\infty}^{+\infty}x_{t}[n]e^{-i2\pi f(t_{0}+nT_{s})}\end{aligned} X(f)=Tsn=+xt[n]ei2πf(t0+nTs)
令:
X s ( f ) = ∑ n = − ∞ + ∞ x t [ n ] e − i 2 π f ( t 0 + n T s ) X_{s}(f)=\sum_{n=-\infty}^{+\infty}x_{t}[n]e^{-i2\pi f(t_{0}+nT_{s})} Xs(f)=n=+xt[n]ei2πf(t0+nTs)
X s ( f ) X_{s}(f) Xs(f)为离散时间傅里叶变换
由傅里叶变换可知,指数衰减函数 y ( t ) = e − σ t y(t)=e^{-\sigma t} y(t)=eσt的频域函数为:
Y ( f ) = 1 σ + i 2 π f Y(f)=\frac{1}{\sigma + i2\pi f} Y(f)=σ+i2πf1
指数衰减函数 y ( t ) = e − σ t y(t)=e^{-\sigma t} y(t)=eσt的离散形式为:
y t [ n ] = e − σ ( t 0 + n T s ) y_{t}[n]=e^{-\sigma (t_{0} + nT_{s})} yt[n]=eσ(t0+nTs)
因此,指数衰减函数的离散傅里叶变换为:
Y ( f ) = T s ∑ n = − ∞ + ∞ e − σ ( t 0 + n T s ) e − i 2 π f ( t 0 + n T s ) = T s ∑ n = − ∞ + ∞ e − ( σ + i 2 π f ) ( t 0 + n T s ) \begin{aligned}Y(f)&=T_{s}\sum_{n=-\infty}^{+\infty}e^{-\sigma (t_{0} + nT_{s})}e^{-i2\pi f(t_{0}+nT_{s})}\\ &=T_{s}\sum_{n=-\infty}^{+\infty}e^{-(\sigma+i2\pi f) (t_{0} + nT_{s})}\end{aligned} Y(f)=Tsn=+eσ(t0+nTs)ei2πf(t0+nTs)=Tsn=+e(σ+i2πf)(t0+nTs)
由泊松求和公式可知:
∑ n = − ∞ + ∞ x [ t 0 + n T s ] = 1 T s ∑ k = − ∞ + ∞ ∫ − ∞ + ∞ x ( t ) e − i 2 k π T s t d t \sum_{n=-\infty}^{+\infty}x[t_{0}+nT_{s}]=\frac{1}{T_{s}}\sum_{k=-\infty}^{+\infty}\int_{-\infty}^{+\infty}x(t)e^{-i\frac{2k\pi}{T_{s}} t}dt n=+x[t0+nTs]=Ts1k=++x(t)eiTs2tdt
由此,化简 Y ( f ) Y(f) Y(f)得:
Y ( f ) = T s ∑ n = − ∞ + ∞ e − ( σ + i 2 π f ) ( t 0 + n T s ) = T s ∑ k = − ∞ + ∞ 1 T s ∫ 0 + ∞ e − ( σ + i 2 π f ) t e − i k 2 π f s t d t = ∑ k = − ∞ + ∞ 1 σ + i 2 π ( f + k f s ) = ∑ k = − ∞ + ∞ Y ( f + k f s ) \begin{aligned}Y(f)&=T_{s}\sum_{n=-\infty}^{+\infty}e^{-(\sigma+i2\pi f) (t_{0} + nT_{s})}\\ &=T_{s}\sum_{k=-\infty}^{+\infty}\frac{1}{T_{s}}\int_{0}^{+\infty}e^{-(\sigma+i2\pi f) t}e^{-ik2\pi f_{s}t}dt\\ &=\sum_{k=-\infty}^{+\infty}\frac{1}{\sigma + i2\pi(f+kf_{s})}\\ &=\sum_{k=-\infty}^{+\infty}Y(f+kf_{s})\end{aligned} Y(f)=Tsn=+e(σ+i2πf)(t0+nTs)=Tsk=+Ts10+e(σ+i2πf)teik2πfstdt=k=+σ+i2π(f+kfs)1=k=+Y(f+kfs)
由此可以看出, Y ( f ) Y(f) Y(f)是以 f f f为周期的周期函数。

4.2、窗函数

测量一个信号时不可能无限时间地去测量,因此时间是有限的。假设我们从 t 0 t_{0} t0开始,采用窗函数取值,一共测量 N f N_{f} Nf个点,则 X ( f ) X(f) X(f)可以写为:
X ( f ) = T s e − i 2 π f t 0 ∑ n = 0 N f − 1 w [ n ] x t [ n ] e − i 2 π f n T s = T s e − i 2 π f t 0 ∑ n = 0 N w − 1 x w t [ n ] e − i 2 π f n T s \begin{aligned}X(f)&=T_{s}e^{-i2\pi ft_{0}}\sum_{n=0}^{N_{f}-1}w[n]x_{t}[n]e^{-i2\pi fnT_{s}}\\ &=T_{s}e^{-i2\pi ft_{0}}\sum_{n=0}^{N_{w}-1}x_{wt}[n]e^{-i2\pi fnT_{s}}\end{aligned} X(f)=Tsei2πft0n=0Nf1w[n]xt[n]ei2πfnTs=Tsei2πft0n=0Nw1xwt[n]ei2πfnTs
其中, x w t [ n ] = w [ n ] x t [ n ] x_{wt}[n]=w[n]x_{t}[n] xwt[n]=w[n]xt[n] w [ n ] w[n] w[n]称为窗函数。
常见的窗函数有:
w [ n ] = { 1 , n ∈ [ 0 , N f − 1 ] 0 , 其他 \begin{aligned}w[n]=\begin{cases}1,&n\in[0,N_{f}-1]\\ 0,&其他\end{cases}\end{aligned} w[n]={1,0,n[0,Nf1]其他
w [ n ] = { s i n 2 ( n π N f − 1 ) , n ∈ [ 0 , N f − 1 ] 0 , 其他 \begin{aligned}w[n]=\begin{cases}sin^{2}(\frac{n\pi}{N_{f}-1}),&n\in[0,N_{f}-1]\\ 0,&其他\end{cases}\end{aligned} w[n]={sin2(Nf1),0,n[0,Nf1]其他

4.3、离散傅里叶变换(DFT)

通常来说,我们并不需要一个连续的频域函数,因此我们想要对其离散,即 X ( f ) → X f [ k ] X(f)\rightarrow X_{f}[k] X(f)Xf[k]。仿照对时间的离散,对频率设置一个初始偏移,即令:
f = f 0 + k N d f t f s f=f_{0}+\frac{k}{N_{dft}}f_{s} f=f0+Ndftkfs
其中, k = 0 , 1 , 2 , . . . , N d f t − 1 k=0,1,2,...,N_{dft}-1 k=0,1,2,...,Ndft1
注意,为了不损失信息,需要有 N d f t ≥ N f N_{dft}≥N_{f} NdftNf
因此,
X f [ k ] = T s e − i 2 π ( f 0 + k N d f t f s ) t 0 ∑ n = 0 N f − 1 x w t [ n ] e − i 2 π ( f 0 + k N d f t f s ) n T s \begin{aligned}X_{f}[k]&=T_{s}e^{-i2\pi(f_{0}+\frac{k}{N_{dft}}f_{s})t_{0}}\sum_{n=0}^{N_{f}-1}x_{wt}[n]e^{-i2\pi(f_{0}+\frac{k}{N_{dft}}f_{s})nT_{s}}\end{aligned} Xf[k]=Tsei2π(f0+Ndftkfs)t0n=0Nf1xwt[n]ei2π(f0+Ndftkfs)nTs
令:
X f s [ k ] = ∑ n = 0 N f − 1 x w t [ n ] e − i 2 π ( f 0 + k N d f t f s ) n T s X_{fs}[k]=\sum_{n=0}^{N_{f}-1}x_{wt}[n]e^{-i2\pi(f_{0}+\frac{k}{N_{dft}}f_{s})nT_{s}} Xfs[k]=n=0Nf1xwt[n]ei2π(f0+Ndftkfs)nTs
即:
X f s [ k ] = ∑ n = 0 N f − 1 x w t [ n ] e − i 2 π ( n T s f 0 + n k N d f t ) X_{fs}[k]=\sum_{n=0}^{N_{f}-1}x_{wt}[n]e^{-i2\pi(nT_{s}f_{0}+\frac{nk}{N_{dft}})} Xfs[k]=n=0Nf1xwt[n]ei2π(nTsf0+Ndftnk)
X f s [ k ] X_{fs}[k] Xfs[k]为离散傅里叶变换,即既对时间离散也对频率离散。

4.4、快速傅里叶变换(FFT)

N d f t = 2 m N_{dft}=2^{m} Ndft=2m且满足 N d f t ≥ N f N_{dft}≥N_{f} NdftNf,则:
X f s [ k ] = ∑ n = 0 N f − 1 x w t [ n ] e − i 2 π ( n T s f 0 + n k 2 m ) X_{fs}[k]=\sum_{n=0}^{N_{f}-1}x_{wt}[n]e^{-i2\pi(nT_{s}f_{0}+\frac{nk}{2^{m}})} Xfs[k]=n=0Nf1xwt[n]ei2π(nTsf0+2mnk)
其中, k = 0 , 1 , 2 , . . . , 2 m − 1 k=0,1,2,...,2^{m}-1 k=0,1,2,...,2m1

5、离散傅里叶逆变换(IDFT)

同理,将 x ( t ) = ∫ − ∞ + ∞ X ( f ) e i 2 π f t d f x(t)=\int_{-\infty}^{+\infty}X(f)e^{i2\pi ft}df x(t)=+X(f)ei2πftdf对频率离散可得:
x ( t ) = ∑ n = − ∞ + ∞ X f [ n ] e i 2 π ( f 0 + n f s ) t f s x(t)=\sum_{n=-\infty}^{+\infty}X_{f}[n]e^{i2\pi(f_{0}+nf_{s})t}f_{s} x(t)=n=+Xf[n]ei2π(f0+nfs)tfs
其中, f = f 0 + n f s f=f_{0}+nf_{s} f=f0+nfs
计算机无法处理无限项,为了与第二章符号一致,我们对 X f [ n ] X_{f}[n] Xf[n]截取,取 n = 0 , 1 , 2 , . . . , N d f t − 1 n=0,1,2,...,N_{dft}-1 n=0,1,2,...,Ndft1,则:
x ( t ) = f s ∑ n = 0 N d f t − 1 X f [ n ] e i 2 π ( f 0 + n f s ) t x(t)=f_{s}\sum_{n=0}^{N_{dft}-1}X_{f}[n]e^{i2\pi(f_{0}+nf_{s})t} x(t)=fsn=0Ndft1Xf[n]ei2π(f0+nfs)t
再对时间离散可得:
x t [ k ] = N f f s 1 N f ∑ n = 0 N d f t − 1 X f [ n ] e i 2 π ( f 0 + n f s ) k T s N f x_{t}[k]=N_{f}f_{s}\frac{1}{N_{f}}\sum_{n=0}^{N_{dft}-1}X_{f}[n]e^{i2\pi(f_{0}+nf_{s})\frac{kT_{s}}{N_{f}}} xt[k]=NffsNf1n=0Ndft1Xf[n]ei2π(f0+nfs)NfkTs
令:
x f s [ k ] = 1 N f ∑ n = 0 N d f t − 1 X f [ n ] e i 2 π ( f 0 + n f s ) k T s N f x_{fs}[k]=\frac{1}{N_{f}}\sum_{n=0}^{N_{dft}-1}X_{f}[n]e^{i2\pi(f_{0}+nf_{s})\frac{kT_{s}}{N_{f}}} xfs[k]=Nf1n=0Ndft1Xf[n]ei2π(f0+nfs)NfkTs
X f s [ k ] X_{fs}[k] Xfs[k]为离散傅里叶逆变换,即既对时间离散也对频率离散。

6、拉普拉斯变换

在古典意义下的傅里叶变换存在的条件是 x ( t ) x(t) x(t)除了满足狄拉克雷条件以外,还要在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 t t t为自变量的函数,这些函数根本不需要考虑 t < 0 t<0 t<0的情况。为了解决这个该问题,就需要通过一些变换使得这些函数变得符合傅里叶变换的条件。
设一个函数 φ ( t ) \varphi(t) φ(t),其在 t < 0 t<0 t<0的区间上没有定义,也不满足在 [ 0 , + ∞ ) [0,+\infty) [0,+) 上绝对可积的限制。我们可以通过下面的变换使其满足限制:
1、乘以单位阶跃函数使其在 t < 0 t<0 t<0上有定义
u ( t ) = { 0 , t < 0 1 , t ≥ 0 u(t)=\begin{cases}0,t<0\\1,t≥0\end{cases} u(t)={0,t<01,t0
2、乘以指数衰减函数 e − σ t e^{-\sigma t} eσt,强制衰减,使其在 [ 0 , + ∞ ) [0,+\infty) [0,+)上绝对可积
lim ⁡ t → ∞ x ( t ) e − σ t = 0 \lim\limits_{t\rightarrow\infty}x(t)e^{-\sigma t}=0 tlimx(t)eσt=0
因此,傅里叶变换就变成了:
F ( w ) = ∫ − ∞ + ∞ x ( t ) u ( t ) e − σ t e − i w t d t = ∫ 0 + ∞ x ( t ) e − ( σ + i w ) t d t \begin{aligned}F(w)&=\int_{-\infty}^{+\infty}x(t)u(t)e^{-\sigma t}e^{-iwt}dt\\ &=\int_{0}^{+\infty}x(t)e^{-(\sigma+iw)t}dt\end{aligned} F(w)=+x(t)u(t)eσteiwtdt=0+x(t)e(σ+iw)tdt
s = σ + i w s=\sigma+iw s=σ+iw,则上式可以写为:
F ( s ) = ∫ 0 + ∞ x ( t ) e − s t d t F(s)=\int_{0}^{+\infty}x(t)e^{-st}dt F(s)=0+x(t)estdt
F ( s ) F(s) F(s)称为 x ( t ) x(t) x(t)的拉普拉斯变换
F ( s ) F(s) F(s)的拉普拉斯逆变换:
x ( t ) = 1 2 π i ∫ σ − i ∞ σ + i ∞ F ( s ) e s t d s x(t)=\frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}F(s)e^{st}ds x(t)=2πi1σiσ+iF(s)estds
拉普拉斯变换存在的条件:当 t ≥ 0 t≥0 t0时, x ( t ) x(t) x(t)有定义,所以这里采用的是单边拉普拉斯变换;由于拉氏变换是通过负指数函数来使得原函数强制衰减,所以要求原函数 x ( t ) x(t) x(t) t → + ∞ t\rightarrow+\infty t+时增长速度不能超过指数函数,一般也不会有函数的增长速度可以超过指数函数了,所以这个限制其实非常宽泛。
傅里叶变换是将函数分解到频率不同、幅值恒为1的单位圆上;拉普拉斯变换是将函数分解到频率幅值都在变化的圆上。因为拉普拉斯变换的基有两个变量,因此更灵活,适用范围更广。

7、Z变换

信号处理的任务是将输入信号序列经过某个(或一系列各种)系统的处理后输出所需要的信号序列,因此,首要的问题是如何由输入信号和所使用的系统的特性求得输出信号。如果用拉氏变换来分析采样系统,则系统的输出必然是 s s s的超越函数,求其拉氏反变换是一件麻烦的事。经过科学家们的努力,寻找了一种 Z Z Z变换法,在这种变换下,使原来的 s s s超越方程变成了一个以 z z z为算子的代数方程,利用 Z Z Z变换的卷积特性则可将这一过程大大简化。只要先分别求出输入信号序列及系统的单位抽样响应序列的 Z Z Z变换,然后再求出二者乘积的反变换即可得到输出信号序列。这里的反变换即逆 Z Z Z变换,是由信号序列的Z变换反回去求原信号序列的变换方式。
F ( s ) F(s) F(s)的连续形式可以得到其离散形式:
F ( s ) = ∑ n = 0 + ∞ x [ n T s ] e − s n T s T s F(s)=\sum_{n=0}^{+\infty}x[nT_{s}]e^{-snT_{s}}T_{s} F(s)=n=0+x[nTs]esnTsTs
z = e s T s z=e^{sT_{s}} z=esTs,则:
F ( z ) = T s ∑ n = 0 + ∞ x [ n T s ] z − n F(z)=T_{s}\sum_{n=0}^{+\infty}x[nT_{s}]z^{-n} F(z)=Tsn=0+x[nTs]zn
F ( z ) F(z) F(z)称为 x [ n ] x[n] x[n] Z Z Z变换
F ( z ) F(z) F(z) Z Z Z逆变换:
x [ n ] = 1 2 π i ∫ c F ( z ) z n − 1 d z x[n]=\frac{1}{2\pi i}\int_{c}^{}F(z)z^{n-1}dz x[n]=2πi1cF(z)zn1dz

  • 16
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值