相位相关法是利用傅里叶变化,在频域进行相位匹配从而达到图像配准的方法。具体原理可以参见
http://blog.csdn.net/ebowtang/article/details/51287309
OpenCV中有现成的函数:
Point2d phaseCorrelate(InputArray src1, InputArray src2,InputArray window = noArray(), CV_OUT double* response = 0);
使用方法可以参见:http://blog.csdn.net/zhaocj/article/details/50157801
但是理论上傅里叶变换的信号在时域和频域上都是无限的,而实际采样得到的图片大小都是有限的,
相当于对信号做了截断。所以要对信号进行延伸,一种方法是对截断后的信号无限延伸补零进行
傅里叶变换(DTFT),这样信号变成了非周期性的离散信号,如下图所示
然而这样变换后得到频域就是无限且连续的。计算机无法处理,所以实际采用的DFT对信号进行了复制延伸,
如下图所示,同时对频域也进行了采样,会得到有限的离散的频域。
DFT对长度为N的信号进行傅里叶变换后会得到N个频率,对MXN的图像进行傅里叶变换后也会得到的频率图大小也
是MXN。这也导致了相位相关法的一些特性
1.因为2D-FT→2D-DFT没有满足周期性,所以相位相关函数不是单个δ函数,
而可能是一个或多个尖峰
2.得到的平移量的范围限制在[-M/2,M/2],[-N/2,N/2],从图2也可以想象出当向右平移x>M/2时,
等同于向左平移M-x
相位相关法的优点:相对于灰度检测的方法,无需设定阈值且效果较好,对光照不敏感,
有一定的抗噪声能力,稳定性好,可检测多个物体的移动,相对于特征点的方法,速度更快,实时性好。
缺点:对模糊图片的效果不佳,图像越大傅里叶变换的计算消耗呈指数增长,只能用于平移,旋转,缩放的图片