Opencv2.4.9源码分析——phaseCorrelate

本文介绍了OpenCV中的phaseCorrelate函数,用于通过相位相关法检测图像之间的相对位移。该方法基于傅立叶变换的位移定理,通过计算互功率谱并进行傅立叶逆变换来确定位移量。文章详细阐述了函数的工作流程,并提供了实现程序,展示了对彩色图像的位移检测结果。
摘要由CSDN通过智能技术生成

相位相关法(phase correlate)可以用于检测两幅内容相同的图像之间的相对位移量。它是基于傅立叶变换的位移定理:一个平移过的函数的傅立叶变换仅仅是未平移函数的傅立叶变换与一个具有线性相位的指数因子的乘积,即空间域中的平移会造成频域中频谱的相移。它的公式定义为:设二维函数(图像)f(x,y)的傅立叶变换为F(u,v),即DFT[f(x,y)]=F(u,v),如果f(x,y)平移(a,b),则平移后的傅立叶变换为:

        (1)

因此,当两幅函数f1(x,y)和f2(x,y)仅仅有位移的差异,即f2(x,y)= f1(x-a,y-b),则它们的傅立叶变换F1(u,v)和F2(u,v)有如下关系:

         (2)

由上式很容易得到f1(x,y)和f2(x,y)的互功率谱为(这里还用到了f1(x,y)和f2(x,y)的频谱的模相等):

         (3)

式中F*表示F的共轭,上式表示平移定理保证了互功率谱的相位等于两幅图像之间的相移。

Opencv的文档给出了详细的用相位相关法求解位移量的过程,

1、对待处理的两幅图像src1和src2应用窗函数去除图像的边界效应,文档中推荐使用汉宁窗,它可用createHanningWindow函数生成;

2、求傅立叶变换:Ga

opencv是一个开源的计算机视觉库,opencv2.4.9是其中的一个版本。在opencv2.4.9中,有一个模块叫做stitching,用于图像拼接。 图像拼接是将多张图像按照一定的顺序和方式进行合并,形成一张更大视野覆盖范围的图像。拼接的过程需要解决图像间的重叠区域匹配、图像变换与叠加等问题。 在opencv2.4.9的stitching模块中,主要有以下几个重要的类: 1. Stitcher类:拼接器类,用于执行拼接的主要操作。它提供了一系列的方法,如设置拼接的模式、添加要拼接的图像等。 2. FeaturesFinder类:特征点检测类,用于在图像中寻找特征点。该类利用SIFT、SURF等算法来检测图像中的关键点,以便进行匹配。 3. FeaturesMatcher类:特征点匹配类,用于对图像中的特征点进行匹配。该类使用KNN算法进行特征点的匹配,并利用RANSAC算法进一步筛选特征点,剔除误匹配。 4. Estimator类:变换估计类,用于估计图像间的变换参数。该类可以通过特征点的对应关系,计算图像间的旋转矩阵、平移矩阵等变换参数。 5. Blender类:图像融合类,用于将拼接后的图像进行融合。该类可以进行多种融合方式,如线性融合、多频融合等。 通过以上的类和方法,opencv2.4.9的stitching模块能够完成图像拼接的过程。整个过程包括特征点检测、特征点匹配、变换参数估计和图像融合等步骤。 需要指出的是,本文只是对opencv2.4.9的stitching模块进行了初步的介绍,具体的源码分析需要深入研究。整个源码工程庞大,包含很多细节和算法,需要对计算机视觉和图像处理有较深入的理解才能进行分析和改进。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值