import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicConv2d(nn.Module):
"""
这是一个基础的卷积模块,可进行参数设置,膨胀卷积和其他参数
"""
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=False)
self.bn = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class RFB_modified(nn.Module):
def __init__(self, in_channel, out_channel):
super(RFB_modified, self).__init__()
self.relu = nn.ReLU(True)
self.branch0 = nn.Sequential(
BasicConv2d(in_channel, out_channel, 1),
)#通道变换
self.branch1 = nn.Sequential(
BasicConv2d(in_channel, out_channel, 1),
BasicConv2d(out_channel, out_channel, kernel_size=(1, 3), padding=(0, 1)),
BasicConv2d(out_channel, out_channel, kernel_size=(3, 1), padding=(1, 0)),
BasicConv2d(out_channel, out_channel, 3, padding=3, dilation=3)
)#第一分支不变尺寸卷积
self.branch2 = nn.Sequential(
BasicConv2d(in_channel, out_channel, 1),
BasicConv2d(out_channel, out_channel, kernel_size=(1, 5), padding=(0, 2)),
BasicConv2d(out_channel, out_channel, kernel_size=(5, 1), padding=(2, 0)),
BasicConv2d(out_channel, out_channel, 3, padding=5, dilation=5)
)##第二分支不变尺寸卷积
self.branch3 = nn.Sequential(
BasicConv2d(in_channel, out_channel, 1),
BasicConv2d(out_channel, out_channel, kernel_size=(1, 7), padding=(0, 3)),
BasicConv2d(out_channel, out_channel, kernel_size=(7, 1), padding=(3, 0)),
BasicConv2d(out_channel, out_channel, 3, padding=7, dilation=7)
)#第三分支不变尺寸卷积
self.conv_cat = BasicConv2d(4*out_channel, out_channel, 3, padding=1)
#多尺度拼接以后进行将通道
self.conv_res = BasicConv2d(in_channel, out_channel, 1)
#通道压缩
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
print(x1.shape)
x2 = self.branch2(x)
print(x2.shape)
x3 = self.branch3(x)
print(x3.shape)
x_cat = self.conv_cat(torch.cat((x0, x1, x2, x3), 1))#多尺度拼接
print(x_cat.shape)
x = self.relu(x_cat + self.conv_res(x))
return x
if __name__ == '__main__':
ras = RFB_modified(1,1).cuda()
input_tensor = torch.randn(1, 1, 352, 352).cuda()
out = ras(input_tensor)
print(out)
print(out.shape)
RBF多尺度融合卷积,保持尺寸不变,融合各个维度Pytorch
该代码定义了一个基础的卷积模块BasicConv2d,以及一个RFB_modified模块,该模块包含了四个不同膨胀率的卷积分支,用于多尺度特征提取,最后通过拼接和通道压缩得到输出。在主函数中,创建了RFB_modified实例并进行了测试运算。
摘要由CSDN通过智能技术生成