玻尔兹曼从玻尔兹曼分布到推荐算法

神经网络的两大基本功能是: 特征变换和分类(回归)预测。每个基本的神经网络模型至少具备两者功能之一。而RBM则是用于进行特征变换的。考虑输入特征为X以及转化的特征为Y(注: 这里YX的另一种表示,而不是预测结果,这里不考虑预测的问题),RBM的任务是找到X\Rightarrow Y的映射关系。基本的神经网络模型,通常用决策函数Y=f(X)表示这种映射关系,而对于RBM来说,则用联合概率分布P(X,Y)表示这种映射关系。无论是判别函数还是联合概率分布,都是可以描述变量关系的,且在任意条件下二者可以互相转化。因此,RBM从概率的角度去描述变量之间的关系,提供了另外一种解决特征提取问题的思路。

来源:https://zhuanlan.zhihu.com/p/24989699

玻尔兹曼分布是基于最大信息熵原理的,而当一个随机变量的平均值给定时,还可以有多种概率分布与之相容。现在的问题是如何从这些相容的概率分布中挑选出“最可几”的分布来作为实际上的分布。显然,要做到这点,必须有个挑选标准,最大信息熵原理就可作为这种挑选标准。

信息熵最大值的概率分布为:

Maxwell–Boltzmann statistics条件下的信息熵最大值的概率分布为:

来源:https://blog.csdn.net/antkillerfarm/article/details/71402953

RBM模型的损失函数与优化

 

RBM模型的关键就是求出我们模型中的参数W,a,bW,a,b。如果求出呢?对于训练集的m个样本,RBM一般采用对数损失函数,即期望最小化下式:

 

来源:https://www.cnblogs.com/pinard/p/6530523.html

 受限玻尔兹曼机在协同过滤的应用。

 将该模型应用到协同过滤需要解决以下两个问题:

  1. 鉴于RBM中的单元都是二元变量, 如果用这些二元变量来对整数值的评分建模?
  2. 用户的打分是非常稀疏的, 亦即用户只会对很少的物品(比如电影)打分, 如何处理这些缺失的评分?

2. 基于RBM的协同过滤

  R. R. Salakhutdinov等人提出了一种使用RBM来进行协同过滤的方法:

  假设有m个电影, 则使用m个softmax单元来作为可见单元来构造RBM.  对于每个用户使用不同的RBM, 这些不同的RBM仅仅是可见单元不同, 因为不同的用户会对不同的电影打分, 所有的这些RBM的可见单元共用相同的偏置以及和隐藏单元的连接权重W. 该方法很好的解决了之前提到的问题:

  1. 使用softmax来对用户的评分进行建模, softmax是一种组合可见单元, 包含k个二元单元, 第i个二元单元当且只当用户对该电影打分为i时才会置为1.
  2. 如果一个用户没有对第j个电影评分, 则该用户的RBM中不存在第j个softmax单元.

来源:http://www.cnblogs.com/kemaswill/p/3269138.html

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值