玻尔兹曼分布推导

熵的理解(玻尔兹曼分布)

0. 玻尔兹曼分布

网络中任意两个状态出现的概率与对应能量之间的关系:

P(α)P(β)=exp(E0/T)exp(E1/T)P(α)P(β)=exp⁡(−E0/T)exp⁡(−E1/T)

从式中可以得出两点结论,

  • (1)BM 网络处于某一状态(P(x=α)P(x=α))下的概率主要取决于此状态下的能量 Eα,能量越低,出现的概率越大;
  • (2)BM 网络处于某一状态的概率还取决于温度参数 TT,温度越高,不同状态出现的概率越接近,网络能量也较易跳出局部最小而搜索全局最小, 
    • 温度低时,则情况相反;

1. 物理的解释

一个密封系统中,装有许多气体粒子(分子),共有 NN 个粒子(由于是密封,不会增加也不会减少),假设系统内部的温度为 TT,系统内的分子有两种状态,ϵ0,ϵ1ϵ0,ϵ1(前者表示低能量的状态,后者表示高能量的状态),处在 ϵ0ϵ0 能级上的粒子有 n0n0 个,处在 ϵ1ϵ1 能及上的粒子有 n1n1 个,显然一个永远满足的等式即为:

n0+n1=Nn0+n1=N

NN 个粒子,存在 n0n0 个 ϵ0ϵ0 和 n1n1 个 ϵ1ϵ1这种分布的组合数(状态数)记为 WW,则 W=(n0N)=(n1N)=N!n0!n1!W=(n0N)=(n1N)=N!n0!n1!

此时我们来计算系统的熵(与系统可能的状态数有关):

S=klog2W=klog2(N!n0!n1!)=k(log2N!log2n0!log2n1!)S=klog2⁡W=klog2⁡(N!n0!n1!)=k(log2⁡N!−log2⁡n0!−log2⁡n1!)

kk 称为玻尔兹曼机常数,WW 为状态数。一些时刻之后向系统内施加一部分能量 ϵϵ,有一粒子从低能级跃迁至高能级,n0=1,n1+=1n0−=1,n1+=1,则新状态下的熵为:

S=klog2W=klog2(N!(n01)!(n1+1)!)=k(log2N!log2(n01)!log2(n1+1)!)S′=klog2⁡W′=klog2⁡(N!(n0−1)!(n1+1)!)=k(log2⁡N!−log2⁡(n0−1)!−log2⁡(n1+1)!)

所以有系统能量的变化为:

ΔS=SS=klog2n0n1+1klog2n0n1ΔS=S′−S=klog2⁡n0n1+1≈klog2⁡n0n1

近似的原因在于,分子的数量是相当大的。由热力学的相关定理可知,

ΔS=ϵT=klnn0n1ΔS=ϵT=kln⁡n0n1

进一步可得出:

n0n1=eϵ/kTn0n1=eϵ/kT

这样的一个分布情况,就是玻尔兹曼分布

阅读更多
换一批

没有更多推荐了,返回首页