复旦大学邱锡鹏《神经网络与深度学习》第二讲 机器学习概述

本文概述了机器学习的基本概念,包括概率理论、不同类型的机器学习方法、关键要素如泛化和正则化,以及具体应用如线性回归(包括多项式扩展和最小二乘法的局限性)、SGD和降维策略。还介绍了线性回归的概率解释和模型选择中的‘偏差-方差’分解,以及一些常用定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1 概率基本知识

2.2 机器学习的定义

2.3 机器学习类型

2.4 机器学习要素

2.5 泛化与正则化

2.6 线性回归

线性模型中的b可以通过将w增加一维即可消除。

最小二乘法要求xxT存在逆矩阵,这个条件有时候不满足,因此最小二乘法不是总适用。改进的方法是SGD和降维方法。

2.7 多项式回归

2.9 线性回归的概率视角

2.9 模型选择与“偏差-方差”分解

2.10 常用的定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值