GBDT算法框架

本文详细介绍了GBDT(梯度提升决策树)算法,包括基础知识、算法推导、应用场景和参数调优。GBDT通过迭代构建弱分类器,减少残差,每次拟合损失函数的负梯度。其关键在于利用损失函数的负梯度方向来拟合新的决策树,以不断降低误差。GBDT适用于回归和分类问题,广泛应用于各种场景。
摘要由CSDN通过智能技术生成

GBDT算法梳理

目录

文中肯定有许多描述不恰当、理解不到位的地方,希望大神们拍正。另外文中一些段落是在引用了一些其它博文的话的基础上的理解,如有侵犯,请指正

1. 基础知识

1.1 决策树

决策树是一种基本的分类与回归方法,它可以认为是定义在特征空间与类空间的条件概率分布,决策树思想,实际上就是寻找最纯净的划分方法。决策树模型不同于线性模型,线性模型是所有特征赋予不同的权值相加得到结果,而决策树则是单个特征进行处理,每一步寻找一个最优特征进行划分。决策树与逻辑回归的不同之处也在于此,逻辑回归是根据所有特征求出概率,然后与某一阈值进行比较从而分类,而决策树每一步是通过最优特征进行划分,直到叶节点。决策树的学习过程主要包括3个步骤:特征选择、决策树的生成和决策树的剪枝。常用的算法有ID3算法、C4.5算法以及CART算法。

1.2 前向分步算法

在这里插入图片描述

1.3 负梯度

梯度提升树:提出了利用负梯度表示残差的近似值。
为什么采用损失函数的负梯度?
L(y,f(x))中将f(x)看成一个参数,为了使L损失函数最小,采用梯度下降的方法即:
f(x)_m=f(x)_m-1-(dL/df(x))//与一般的梯度下降法相同
而f(x)_m=f(x)_m-1+T(x;Q)//Q为前向分布法每次得到这棵树的参数,T(x;Q)为训练的新树
所以有f(x)_m-1+T(x;Q)=f(x)_m-1-(dL/df(x))
所以有T(x;Q)=-(dL/df(x))
左边为预测值,右边为真实值,所以整个过程就变成了每次拟合损失函数的负梯度的值。
所以可以将这种方法看成一般损失函数的情况,而平方损失是特殊的情况(拟合残差)

2. GBDT简介

GBDT是一个应用很广泛的算法,可以用来做分类、回归。GBDT这个算法还有其它名字,如MART(Multiple AdditiveRegression Tree),GBRT(Gradient Boost Regression Tree),TreeNet等等。Gradient Boost其实是一个框架,里面可以套入很多不同的算法

GBDT旨在不断减少残差(回归),通过不断加入新的树旨在在残差减少(负梯度)的方向上建立一个新的模型。——即损失函数是旨在最快速度降低残差。
GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差来不断提高最终分类器的精度。弱分类器一般会选择为CART TREE(也就是分类回归树)。由于上述高偏差和简单的要求 每个分类回归树的深度不会很深。最终的总分类器 是将每轮训练得到的弱分类器加权求和得到的(也就是加法模型)。

模型最终可以描述为:

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值