ESP32 开发笔记(十)使用 ESP32+Camera 二维码识别

这篇开发笔记介绍了如何利用ESP32和Camera模块进行二维码识别,详细讲解了环境搭建,包括ESP-WHO和ESP-IDF的配置,以及quirc二维码识别库的使用。在摄像头初始化后,实现了二维码的检测和解析,最终展示了一些识别结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用 ESP32 Camera 进行二维码识别

环境搭建

使用 quirc 二维码识别库

摄像头初始化

#define CAMERA_PIXEL_FORM PIXFORMAT_GRAYSCALE
#define CAMERA_FRAME_SIZE FRAMESIZE_VGA

void app_main()
{
   
#if CONFIG_CAMERA_MODEL_CUSTOM
    /* IO13, IO14 is designed for JTAG by default,
     * to use it as generalized input,
     * firstly declair it as pullup input */
    gpio_config_t conf;
    conf.mode = GPIO_MODE_INPUT;
    conf.pull_up_en = GPIO_PULLUP_ENABLE;
    conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
    conf.intr_type = GPIO_INTR_DISABLE;
    conf.pin_bit_mask = 1LL << 13;
    gpio_config(&conf);
    conf.pin_bit_mask = 1LL << 14;
    gpio_config(&conf);
#endif

    config.ledc_channel = LEDC_CHANNEL_0;
    config.ledc_timer = LEDC_TIMER_0;
    config.pin_d0 = Y2_GPIO_NUM;
    config.pin_d1 = Y3_GPIO_NUM;
    config.pin_d2 = Y4_GPIO_NUM;
    config.pin_d3 = Y5_GPIO_NUM;
    config.pin_d4 = Y6_GPIO_NUM;
    config.pin_d5 = Y7_GPIO_NUM;
    config.pin_d6 = Y8_GPIO_NUM;
    config.<
### 使用ESP32进行二维码识别 #### 主要特点 ESP32系列微控制器支持多种外设接口,能够运行MicroPython脚本语言来实现复杂的嵌入式应用。对于二维码识别功能,可以通过摄像头模块(如ESP32-CAM)配合特定库函数完成图像采集与处理任务。 以下是基于ESP32-S3-N8R8和ESP32-CAM的两种常见方案: 1. **ESP32-S3-N8R8 配合 `code_recognition` 类** - 此类提供了封装好的API用于简化开发流程[^1]。 - 它允许开发者快速集成二维码读取逻辑而无需深入研究底层算法细节。 2. **ESP32-CAM 实现更高级别的控制** - 不仅能捕获视频流数据还可以将其转换成适合解码器使用的格式[^2][^3]。 - 支持额外硬件组件比如TFT屏幕以便实时预览捕捉画面或者展示解析后的字符串信息。 #### 示例代码 下面分别给出这两种情况下的简单例子供参考学习: ##### 方案一:使用 ESP32-S3-N8R8 和 `code_recognition` ```python from machine import Pin, I2C import time from code_recognition import CodeRecognition # 导入QRCode识别库 i2c = I2C(scl=Pin(22), sda=Pin(21)) # 初始化I2C总线 cr = CodeRecognition(i2c) while True: result = cr.read_code() # 调用read_code方法尝试获取条形码/二维码内容 if result is not None: print('Detected:', result.decode()) # 如果成功则打印出来 time.sleep_ms(500) ``` ##### 方案二:采用 ESP32-CAM 自定义过程 ```python import cv2 from picamera.array import PiRGBArray from picamera import PiCamera import zbarlight camera = PiCamera() rawCapture = PiRGBArray(camera) for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): image = frame.array codes = zbarlight.scan_codes('qrcode', image) # 利用zbarlight扫描图片中的二维码 if codes: print(codes) # 输出找到的第一个匹配项 rawCapture.truncate(0) # 清理缓冲区准备下一轮循环 ``` 注意上述第二个实例可能需要安装额外依赖包如OpenCV-python以及pyzbar等,并且实际部署前还需调整参数适配具体设备型号差异。 #### 库函数说明 - 对于第一种方式主要依靠官方提供的`code_recognition.py`文件作为核心工具集; - 第二种途径则是借助第三方开源项目例如PyZBar来进行最终的数据提取工作^3]。 #### 总结 无论是选用哪一种技术路线都各有优劣权衡考虑因素较多,在选择之前建议充分评估各自适用场景再做决定。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值