【排序】图解桶排序

一、思想

一句话总结:划分多个范围相同的区间,每个子区间自排序,最后合并

桶排序是计数排序的扩展版本,计数排序可以看成每个桶只存储相同元素,而桶排序每个桶存储一定范围的元素,通过映射函数,将待排序数组中的元素映射到各个对应的桶中,对每个桶中的元素进行排序,最后将非空桶中的元素逐个放入原序列中。

桶排序需要尽量保证元素分散均匀,否则当所有数据集中在同一个桶中时,桶排序失效。

二、图解过程


三、核心代码

public static void bucketSort(int[] arr){
    
    // 计算最大值与最小值
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for(int i = 0; i < arr.length; i++){
        max = Math.max(max, arr[i]);
        min = Math.min(min, arr[i]);
    }
    
    // 计算桶的数量
    int bucketNum = (max - min) / arr.length + 1;
    ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
    for(int i = 0; i < bucketNum; i++){
        bucketArr.add(new ArrayList<Integer>());
    }
    
    // 将每个元素放入桶
    for(int i = 0; i < arr.length; i++){
        int num = (arr[i] - min) / (arr.length);
        bucketArr.get(num).add(arr[i]);
    }
    
    // 对每个桶进行排序
    for(int i = 0; i < bucketArr.size(); i++){
        Collections.sort(bucketArr.get(i));
    }
    
    // 将桶中的元素赋值到原序列
	int index = 0;
	for(int i = 0; i < bucketArr.size(); i++){
		for(int j = 0; j < bucketArr.get(i).size(); j++){
			arr[index++] = bucketArr.get(i).get(j);
		}
	}  
}

四、复杂度分析

1. 时间复杂度:O(N + C)

对于待排序序列大小为 N,共分为 M 个桶,主要步骤有:

  • N 次循环,将每个元素装入对应的桶中
  • M 次循环,对每个桶中的数据进行排序(平均每个桶有 N/M 个元素)

一般使用较为快速的排序算法,时间复杂度为 O ( N l o g N ) O(NlogN) O(NlogN),实际的桶排序过程是以链表形式插入的。

整个桶排序的时间复杂度为:

O ( N ) + O ( M ∗ ( N / M ∗ l o g ( N / M ) ) ) = O ( N ∗ ( l o g ( N / M ) + 1 ) ) O(N)+O(M*(N/M*log(N/M)))=O(N*(log(N/M)+1)) O(N)+O(M(N/Mlog(N/M)))=O(N(log(N/M)+1))

当 N = M 时,复杂度为 O ( N ) O(N) O(N)

2. 额外空间复杂度:O(N + M)

五、稳定性分析

桶排序的稳定性取决于桶内排序使用的算法。

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 120
    点赞
  • 273
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 31
    评论
### 回答1: 可以的,下面是Java中选择排序图解说明: 选择排序是一种简单的排序算法,其基本思想是找到最小值,并将其放在序列的起始位置,然后重复这个过程直到整个序列都有序为止。 以下是Java中选择排序的实现过程及图解说明: ``` public static void selectionSort(int[] arr) { int n = arr.length; for (int i = 0; i < n - 1; i++) { int minIndex = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[minIndex]) { minIndex = j; } } int temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } } ``` 首先,找到数组中最小的元素,然后将它和数组的第一个元素交换位置。接着,在剩下的元素中找到最小的元素,将它和数组的第二个元素交换位置。不断重复这个过程,直到整个数组有序。 例如,假设有一个未排序的数组arr=[5, 2, 4, 6, 1, 3],其选择排序过程如下所示: 1. 第一次遍历,找到最小元素1,并将其与第一个元素5交换位置,数组变为[1, 2, 4, 6, 5, 3]。 2. 第二次遍历,从第二个元素2开始,找到剩余元素中的最小元素2,并将其与第二个元素2交换位置,数组变为[1, 2, 4, 6, 5, 3]。 3. 第三次遍历,从第三个元素4开始,找到剩余元素中的最小元素3,并将其与第三个元素4交换位置,数组变为[1, 2, 3, 6, 5, 4]。 4. 以此类推,直到整个数组有序。 这就是选择排序的基本实现过程,它可以确保数组中的元素按升序排列。 ### 回答2: 选择排序是一种简单但低效的排序算法,其基本思想是每次从待排序的元素中选出最小(或最大)的一个元素,依次放置到已排序的序列的末尾,直到所有元素都排好序为止。下面是用图解的方式说明选择排序的过程。 假设有一个待排序的数组arr,初始状态下数组为[5,4,3,2,1]。 首先,我们从数组中找到最小的元素,在这里是1,并将其与第一个元素交换位置,此时数组变为[1,4,3,2,5]。 然后,从剩下的四个元素中找到最小的元素,即2,将其与第二个元素交换位置,数组变为[1,2,3,4,5]。 接着,从剩下的三个元素中找到最小的元素,即3,将其与第三个元素交换位置,数组变为[1,2,3,4,5]。 继续,找到最小的元素4,将其与第四个元素交换位置,数组不变。 最后,数组中只剩下一个元素5,已经排好序。 通过图解可以清楚地看到选择排序的过程。每次在剩下的元素中找到最小的元素,并把它放在正确的位置。这个过程是逐渐地形成有序部分的过程,直到数组全部有序。 需要注意的是,选择排序的时间复杂度为O(n^2),其中n为数组的长度。由于每次只找到一个最小元素,并将其放在正确的位置,所以即便数组已经有序,算法也需要进行完整的比较和交换的过程。因此,相比于其他更高效的排序算法,选择排序并不是一个性能很好的选择。 ### 回答3: 选择排序是一种简单直观的排序算法。它的核心思想是在未排序序列中找到最小(或最大)的元素,将其放到已排序序列的末尾。 在图解选择排序的过程中,我们假设有一个待排序数组{64, 25, 12, 22, 11}: 1. 首先,从待排序序列中找到最小的元素,即11。 2. 将最小元素与待排序序列的第一个元素进行交换,此时得到的序列是{11, 25, 12, 22, 64}。 3. 接下来,在剩余的序列中找到最小的元素,即12。 4. 将最小元素与待排序序列的第二个元素进行交换,此时得到的序列是{11, 12, 25, 22, 64}。 5. 继续按照上述步骤,在剩余的序列中找到最小的元素,并依次将其与待排序序列中的元素进行交换,得到最终排序后的序列{11, 12, 22, 25, 64}。 选择排序的过程可以用下图表示: 初始状态:[64, 25, 12, 22, 11] 第一次选择:[11, 25, 12, 22, 64] 第二次选择:[11, 12, 25, 22, 64] 第三次选择:[11, 12, 22, 25, 64] 第四次选择:[11, 12, 22, 25, 64] 通过不断选择未排序序列中的最小(或最大)元素并交换,就可以逐步将数组从小到大(或从大到小)进行排序。 选择排序的时间复杂度为O(n^2),其中n为数组长度。尽管选择排序不是最高效的排序算法,但由于其实现简单,对于小规模数组仍然是一种不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

str_818

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值