第四章:课后习题SAS代码

本篇博客主要介绍如何使用SAS进行时序数据分析,包括绘制时序图、判断序列平稳性、分析自相关和偏自相关系数、选择合适的模型(如AR, MA, ARMA)进行拟合,并基于模型预测未来盈亏、降雪量等数据。" 103814034,9171007,CentOS7 C/C++ 连接 MariaDB/MySQL 实战指南,"['Linux', '数据库', 'C/C++', '编程', 'MariaDB']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.1.某公司过去50个月每月盈亏情况

(1)绘制该序列时序图;

(2)判断该序列的平稳性与纯随机性;

(3)考察该序列的自相关系数和偏自相关系数的性质;

(4)选择适当模型拟合该序列的发展;

(5)利用拟合模型预测该公司未来五年的盈亏情况。

本题SAS代码

data a;

input x@@;

t=_n_;

cards;

-2.000  -0.703  -2.232  -2.535  -1.662  -0.152 2.155 2.298 0.886 1.871 1.933

2.221   0.328 -0.103 0.337 1.334 0.864 0.205 0.555 0.883 1.734    0.824

-1.054  1.015 1.479 1.158 1.002  -0.415 -0.193 -0.502 -0.316 -0.421   -0.448

-2.115 0.271 -0.558 -0.045 -0.221 -0.875 -0.014 1.746 1.481    0.950 1.714

0.220 -1.924 -1.217 -1.907 0.200 -0.237

;

proc arima data=a;

identify var=x stationarity=(adf);

estimate p=1 noint;

forecast id=t lead=60;

run;

答案

(1)绘制时序图(略)

(2)该序列为平稳非白噪声

(3)自相关图拖尾,偏自相关图一阶截尾

(4)拟合AR(1)模型

(5)五年预测值见sas输出(略)

4.2

本题SAS代码

data a;

input x@@;

t=_n_;

cards;

4.101 3.297 3.533 5.687 6.778 4.873 3.592 3.973 2.731 3.557 2.863 4.170 4.225 2.581 1.965

4.257 4.373 3.573 3.320 2.257 3.110 4.574 5.328 2.645 2.859 3.721 3.836 2.417 3.074 3.483

3.847 3.250 3.735 4.842 3.564 3.109 2.463 1.778 1.450 1.956 2.196 4.584 3.715 1.853 2.543

2.123 2.756 3.690

;

proc arima data=a;

identify var=x stationarity=(adf);

estimate q=1;

forecast id=t lead=60;

run;

答案

(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值