- 博客(11)
- 收藏
- 关注
原创 如何自己搭建一个jupyter notebook远程服务器
jupyter-server文章目录jupyter-server1、购买阿里云的ECS云服务器2、配置ECS的ssh,以便远程访问3、用ssh客户端连接ECS,配置jupyter notebook环境a、安装anaconda,下载清华镜像的安装包,并安装b、刷新PATHc、更新condad、生成jupyter配置文件,并编辑4、在ECS控制台开放端口5、后台运行jupyter notebook7、玩点花样a、修改jupyter网页的css,实现自定义字体等b、使用juyter notebook的插件c、安
2021-12-08 18:50:16 1328
原创 线性差分方程及其通解的一般求法
本文介绍了线性差分方程的通解,从特征方程以及延迟算子两个方面介绍了相关概念。并且以AR(2)模型为例,详细介绍了2元线性差分方程的通解情况,另外有若干例题。最后还给出了此类问题矩阵形式,但才疏学浅未能求解。
2021-10-29 16:51:05 9007 1
原创 MATLAB符号积分范例
求∫aa+1nx2(x−a)n−1dx−(nn+1+a)2\int_a^{a+1} nx^2(x-a)^{n-1}dx-(\frac{n}{n+1}+a)^2∫aa+1nx2(x−a)n−1dx−(n+1n+a)2,满足a>0,n∈N∗a>0,n\in N^*a>0,n∈N∗求解如下:1、先求积分syms a n x;%规定符号assume(a>0);%范围assume(n,{'positive','integer'});int(n*x^2*(x-a)^(n-1),x
2021-03-06 18:30:00 971
原创 如何优雅地使用jupyter notebook学习R语言和Python
安装jupyter notebook推荐直接安装Anaconda,会附带python以及jupyter。官网:https://www.anaconda.com/jupyter添加R语言内核jupyter notebook本身是自带python内核的实际上它也是支持R语言的内核的(其实支持的内核非常多,还有java等等安装方法:1、安装R语言环境官网:https://www.r-project.org/2、配置R环境在R的命令行输入以下命令(mac直接在终端输入R会激活R的命令行w
2021-03-06 18:25:53 659
原创 python求解经典汉诺塔问题、多塔汉诺塔问题
经典汉诺塔汉诺塔是根据一个传说形成的数学问题:有三根杆子A,B,C。A杆上有 N 个 (N>1) 穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至 C 杆:1、每次只能移动一个圆盘;2、大盘不能叠在小盘上面。问:如何移?最少要移动多少次?基本想法用f(n,A,B)f(n,A,B)f(n,A,B)来表示把n个圆盘从A移到B的方法;ABC三根杆子,B作为缓存区,n个圆盘从A到C。分为三步:1、先把n-1个盘从A移到B,f(n−1,A,B)f(n-1,A,B)f(n−1,
2020-12-11 21:40:47 1264
原创 python求解线性规划问题———单纯形法(二)
两阶段法解一般的线性规划问题1、两阶段法是什么单纯形法的关键在与如何找到初始基可行解,而两阶段法通过添加人工变量,使得基可行解易求得,然后通过迭代得到第一阶段的最优解,再讨论原问题的最优解情况。2、python实现3、原问题解情况的讨论源代码import numpy as npfrom fractions import Fraction as fdef getinput(m, n): # m个约束条件,n个变量 global vect,matrix a = [] #约束
2020-11-07 14:16:07 1643 7
原创 python求解线性规划问题———单纯形法(一)
单纯形法1为什么叫单纯形法单纯形是N 维空间中的N+1 个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体等等,都是单纯形。已经证明线性规划问题如果存在可行域,那么可行域必然是个凸集,其最优解必然在顶点取到——单纯形。2单纯形法怎么用单纯形法的一般解题步骤可归纳如下:1、把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。2、若基本可行解不存在,即约束条件有矛盾,则问题无解。3、若基本可行解存在,从初始基可行解作为起点,根据最
2020-11-06 23:53:32 7340 26
原创 python解决上n级台阶问题,步长为3k+1,k为任一自然数
Problem竺竺为了追求漂亮温柔的学姐,决定走到学姐所在的第n级平台上,由于他心情欢快连跑带跳,他一次只能向上走1,4,7,10…(即3n+1)级台阶。竺竺想知道他有多少种方法走上这n级台阶,你能帮帮他吗?Input一行一个整数n(n<=10000),表示一共有n级台阶。Output一行一个整数,表示竺竺上台阶的方案数,结果对100003取余。Sample Input5Sample Output3初步想法def count(n),计算上n级台阶的方案数;所有的方案按照最后一步
2020-10-13 01:26:31 621 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人