状态压缩DP-蒙德里安的梦想

求把N*M的棋盘分割成若干个1*2的的长方形,有多少种方案。例如当N=2,M=4时,共有5种方案。当N=2,M=3时,共有3种方案。

如下图所示:

2411_1.jpg

思路:

1、所谓的状态压缩DP,就是用二进制数保存状态。为什么不直接用数组记录呢?因为用一个二进制数记录方便作位运算。前面做过的八皇后,八数码,也用到了状态压缩。

 2. 本题等价于找到所有横放 1 X 2 小方格的方案数,因为所有横放确定了,那么竖放方案是唯一的。

 3. 用f[i][j]记录第i列第j个状态。j状态位等于1表示上一列有横放格子,本列有格子捅出来。转移方程很简单,本列的每一个状态都由上列所有“合法”状态转移过来f[i][j] += f[i - 1][k]

 4. 两个转移条件: i 列和 i - 1列同一行不同时捅出来 ; 本列捅出来的状态j和上列捅出来的状态k求或,得到上列是否为奇数空行状态,奇数空行不转移。

 5. 初始化条件f[0][0] = 1,第0列只能是状态0,无任何格子捅出来。返回f[m][0]。第m + 1列不能有东西捅出来。

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含两个整数N和M。

当输入用例N=0,M=0时,表示输入终止,且该用例无需处理。

输出格式

每个测试用例输出一个结果,每个结果占一行。

数据范围

1≤N,M≤111≤N,M≤11

输入样例:

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

输出样例:

1
0
1
2
3
5
144
51205
#include<bits/stdc++.h>
using namespace std;
const int N = 12, M = 1 << N;
int st[M];
long long f[N][M];


int main(){
    int n, m;
    while (cin >> n >> m && (n || m)){

        for (int i = 0; i < 1 << n; i ++){
            int cnt = 0;
            st[i] = true;
            for (int j = 0; j < n; j ++)
                if (i >> j & 1){
                    if (cnt & 1) st[i] = false; // cnt 为当前已经存在多少个连续的0
                    cnt = 0;
                }
                else cnt ++;
            if (cnt & 1) st[i] = false; // 扫完后要判断一下最后一段有多少个连续的0
        }

        memset(f, 0, sizeof f);
        f[0][0] = 1;
        for (int i = 1; i <= m; i ++)
            for (int j = 0; j < 1 << n; j ++)
                for (int k = 0; k < 1 << n; k ++)
                    if ((j & k) == 0 && (st[j | k])) 
                    // j & k == 0 表示 i 列和 i - 1列同一行不同时捅出来
                    // st[j | k] == 1 表示 在 i 列状态 j, i - 1 列状态 k 的情况下是合法的.
                        f[i][j] += f[i - 1][k];      
        cout << f[m][0] << endl;
    }
    return 0;
}


参考:https://www.acwing.com/solution/acwing/content/5121/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值