numpy
为实现自我而奋斗
愿你三冬暖,愿你春不寒
愿你天黑有灯,下雨有伞
愿你善其身,愿你遇良人
暖色浮余生,有好人相伴
愿你深情不被辜负
展开
-
python之Numpy 线性代数
线性代数前言一、矩阵和向量积矩阵特征值与特征向量矩阵分解奇异值分解QR分解Cholesky分解范数和其它数字矩阵的范数方阵的行列式矩阵的秩矩阵的迹解方程和逆矩阵逆矩阵求解线性方程组前言Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarray 和 matrix 对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在原创 2020-11-11 22:20:57 · 1020 阅读 · 0 评论 -
python之Numpy 统计相关
统计相关次序相关计算最小值计算最大值计算极差计算分位数均值与方差计算中位数计算平均值计算加权平均值计算方差计算标准差计算协方差矩阵计算相关系数直方图次序相关计算最小值numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])import numpy as npx = np.array([[11, 12, 13, 14, 15],原创 2020-11-11 22:00:53 · 606 阅读 · 0 评论 -
python之Numpy随机抽样
随机抽样前言一、随机模块二、离散型随机变量二项分布计算期望和方差泊松分布超几何分布三、连续型随机变量均匀分布四、正态分布四、指数分布其他随机函数前言numpy.random 模块对 Python 内置的 random 进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数,如正态分布、泊松分布等。一、随机模块numpy.random.seed(seed=None)seed()用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed()值,则每次生成的随机数都相同,如果不设置这个原创 2020-11-11 21:43:39 · 4472 阅读 · 0 评论 -
python之Numpy 输入与输出
输入和输出numpy二进制文件save()、savez()和load()函数以 numpy 专用的二进制类型(npy、npz)保存和读取数据,这三个函数会自动处理ndim、dtype、shape等信息,使用它们读写数组非常方便,但是save()输出的文件很难与其它语言编写的程序兼容。npy格式:以二进制的方式存储文件,在二进制文件第一行以文本形式保存了数据的元信息(ndim,dtype,shape等),可以用二进制工具查看内容。npz格式:以压缩打包的方式存储文件,可以用压缩软件解压。numpy原创 2020-11-11 21:01:02 · 1521 阅读 · 0 评论 -
python之Numpy 排序搜索计数及集合操作
排序搜索计数排序numpy.sort(a[, axis=-1, kind='quicksort', order=None])axis:排序沿数组的(轴)方向,0表示按行,1表示按列,None表示展开来排序,默认为-1,表示沿最后的轴排序。kind:排序的算法,提供了快排’quicksort’、混排’mergesort’、堆排’heapsort’, 默认为‘quicksort’。order:排序的字段名,可指定字段排序,默认为None.np.random.seed(20200612)x =原创 2020-11-11 18:26:54 · 376 阅读 · 0 评论 -
python之Numpy 数学函数及逻辑函数
数学函数及逻辑函数数学函数向量化和广播有了向量化,代码无需使用显式循环(这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替)广播机制:描述了numpy如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便他们具有兼容的形状,兼容条件:两个数组的每一维等长,或其中一个数组为一维,那么广播机制就适用。广播规则:如果两个数组的维度数dim不相同,那么小维度数组的形状将会在左边补1。如果shape维度不匹配,但是有维度是1,那么可以扩展维度是1的维度匹配另原创 2020-11-11 11:50:20 · 274 阅读 · 0 评论 -
python之Numpy数组操作
数组操作更改形状numpy.ndarray.shape表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。可以通过改变shape属性来改变数组的形状。x = np.array([1, 2, 9, 4, 5, 6, 7, 8])print(x.shape) # (8,)x.shape = [2, 4]print(x)# [[1 2 9 4]# [5 6 7 8]]numpy.ndarray.flat将数组转换为一维的迭代器,可以用for访问数组原创 2020-11-10 22:14:44 · 482 阅读 · 0 评论 -
python之Numpy索引
索引,切片与迭代副本与视图在 Numpy 中,尤其是在做数组运算或数组操作时,返回结果不是数组的 副本 就是 视图。在 Numpy 中,所有赋值运算不会为数组和数组中的任何元素创建副本。numpy.ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。x = np.array([1, 2, 3, 4, 5, 6, 7, 8])y = x.copy()y[0] = -1print(x)# [1 2 3 4 5 6 7 8]pri原创 2020-11-09 22:15:15 · 720 阅读 · 0 评论 -
python之Numpy 数组类型及数组创建
数组类型及数组创建时间日期和时间增量在 numpy 中,我们很方便的将字符串转换成时间日期类型 datetime64(datetime 已被 python 包含的日期时间库所占用)。datatime64是带单位的日期时间类型。datetime64 的应用为了允许在只有一周中某些日子有效的上下文中使用日期时间,NumPy包含一组“busday”(工作日)功能。numpy.busday_offset(dates, offsets, roll='raise', weekmask='1111100',原创 2020-11-09 21:25:09 · 886 阅读 · 0 评论