STFDCNN(基于深度卷积神经网络的时空卫星图像融合)

遥感图像时空融合DCSTFN:https://editor.csdn.net/md/?articleId=117733388STFDCNN主要思路:首先,利用神经网络(NLMCNN)学习重采样LTHS与低空间分辨率LTHS之间的非线性映射,然后在低空间分辨率LTHS与原始LTHS之间建立第二超分辨率CNN (SRCNN)。(为了获得最好的结果,预测日期的第一个CNN的输出不直接输入到SRCNN模型中,而是使用高通调制进行调整)文章目录遥感图像时空融合优势一、介绍二、模型1.构造2.方法预测阶段1
摘要由CSDN通过智能技术生成

遥感图像时空融合

DCSTFN:https://editor.csdn.net/md/?articleId=117733388


STFDCNN主要思路: 首先,利用神经网络(NLMCNN)学习重采样LTHS与低空间分辨率LTHS之间的非线性映射,然后在低空间分辨率LTHS与原始LTHS之间建立第二超分辨率CNN (SRCNN)。(为了获得最好的结果,预测日期的第一个CNN的输出不直接输入到SRCNN模型中,而是使用高通调制进行调整)


优势

1)自动提取有效的图像特征;
2)学习MODIS和LSR Landsat影像的端到端映射;
3)产生更有利的融合结果。

比较实验:与基于稀疏表示的时空融合模型进行了比较


一、介绍

以前基于稀疏表示的局限性:
1、图像特征需要手工设计,给算法带来了复杂性,性能不稳定
2、算法实现过程中,特征提取,字典学习,稀疏表示,图像重建步骤是分开进行的
3、算法是针对小尺度研究区域开发和验证的,没有考虑到现实中大量的遥感数据


CNN的成功可以归结为三个方面: 1)CNN的深度结构对大尺度图像的特征捕获更有效; 2)提出快速高效的训练方法,如修正线性单元(ReLU)[23]、批量归一化[24]、残差学习[25]等; 3)通过在功能强大的gpu上进行并行运算,显著提高了训练速度。

二、模型

1.构造

具体来说,该模型包括三个步骤:NLM、SR和图像融合(其中前两个步骤是通过一个五层CNN实现的),网络从数据本身自动学习图像特征,并通过反向传播共同优化特征提取、NLM和图像重建的步骤。

2.方法

流程图:
在这里插入图片描述

可以看出:
该方法分为训练阶段和预测阶段。
由于训练和预测以相同的方式分别在所有波段上实施。

训练阶段:首先学习MODIS(500m)和低空间分辨率(LSR)Landsat(250)图像之间的NLM模型,然后学习(LSR)Landsat和原始Landsat图像之间的SR模型。

预测阶段:(采用高通调制和加权相结合的融合模型)
将之前和预测日期的MODIS图像输入到学习的NLM CNN中,得到过渡的LSR Landsat图像,然后将过渡的LSR Landsat图像输入到融合模型中,得到预测日期的LSR Landsat图像;最后一步的融合结果与之前的模拟LSR Landsat图像一起输入到学习的SR CNN中,得到过渡的Landsat图像,然后将过渡的Landsat图像输入到融合模型中,得到预测日期的最终融合结果。

预测阶段

1、NLM CNN:

在这里插入图片描述
首先对Landsat进行下采样操作,让其分辨率与MODIS的分辨率相似。为了缩小下一步SR的分辨率差距,将Landsat的空间分辨率下降了10倍,将MODIS和LSR Landsat图像的训练样本分别表示为 X X X Y l {Y^l} Yl,我们期望学习一个NLM函数 F M ( . ) F^M(.) FM(.),使 F M ( X ) F^M(X) FM(X)近似于 Y l Y^l Yl。考虑到 X X X Y l {Y^l} Yl有很大的相似性,我们从 X X X Y l {Y^l} Yl学到一个残差图像,这样就可以重点学习 Y l {Y^l} Yl的高频细节信息。残差图像定义为 R = Y l − X R = Y^l-X R=YlX。因此,我们期望学习一个映射函数 F M ( . ) F^M(.) FM(.),让 F M ( X ) F^M(X) FM(X)相似于 R R R。在预测残差图像之后,通过输入MODIS图像和残差图像之和得到地表真实的LSR Landsat图像。NLM CNN的结构由五层组成,输入层,三卷积隐藏层和输出层,在三个隐藏层对应于三个操作:特征提取;NLM;和重建。

为了提取输入的MODIS图像的特征,我们使用 n 1 n1 n1 k 1 ∗ k 1 k_1*k_1 k1k1的卷积核,在保证精度的前提下为了加快网络的收敛速度,在卷积核响应的非线性中采用RELU激活函数。然后,从第一个隐层得到 n 1 n1 n1个MODIS特征图,这一步可以表示为以下公式:
F 1 M ( X ) = m a x ( 0 , W 1 ∗ X + b 1 ) F_1^M(X) = max(0,W_1*X+b_1) F1M(X)=max(0,W1X+b1) (1)
其中, W 1 ∈ R k 1 ∗ k 1 ∗ n 1 W_1\in R^{k_1*k_1*n1} W1Rk1k1n1表示卷积核的权重, b 1 ∈ R n 1 b_1 \in R^n1 b

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为实现自我而奋斗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值