
遥感图像融合
文章平均质量分 77
为实现自我而奋斗
愿你三冬暖,愿你春不寒
愿你天黑有灯,下雨有伞
愿你善其身,愿你遇良人
暖色浮余生,有好人相伴
愿你深情不被辜负
展开
-
envi问题解答
目录前言1. 出现错误提示:The installation of MSVC_2010_SP1_x64_32bit has failed.问题描述解决方法2. 安装完成之后找不到证书license3. 打开软件出现 LICENSE MANAGER: Cannot checkout an uncounted license within a Windows Terminal Services guest session.问题描述解决方法前言安装 ENVI 的过程还是比较痛苦的。ENV转载 2021-11-08 14:47:51 · 8088 阅读 · 11 评论 -
遥感影像图像处理
遥感影像图像处理:重采样:图像重采样就是从高分辨率遥感影像中提取出低分辨率影像,或者从低分辨率影像中提取高分辨率影像的过程。常用的方法有最邻近内插法、双线性内插法、三次卷积法等二、重采样方法1 使用ReadAsArray函数def ReadAsArray(self, xoff=0, yoff=0, win_xsize=None, win_ysize=None, buf_obj=None, buf_xsize = None, buf_ysize = None,原创 2021-11-08 09:37:21 · 1491 阅读 · 0 评论 -
A guide to convolution arithmetic for deep learning
文章目录前言一、Introduction1、离散卷积二、使用步骤1.引入库2.读入数据总结前言关于卷积过程中,卷积核的大小变化问题,公式太难记了,然后就一直逃避这个问题,结果遭受了社会的毒打,然后来学习一遍,记录一下。提示:以下是本篇文章正文内容,下面仅是个人的见解,虚心接受指导。GitHub:https://github.com/vdumoulin/conv_arithmetic一、Introduction1、解释卷积层与转置卷积层之间的关系。2、在卷积、池化和转置卷积层中的输入尺寸、原创 2021-07-15 21:23:14 · 324 阅读 · 0 评论 -
2021-07-11
被这个raster搞炸了,转一篇,慢慢看,哎。。。。Example 1 def array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array, nodata, EPSG): """This function take a regular array to create a raster with it""" print("I am dealing with nodata values") array[np.转载 2021-07-11 15:26:25 · 276 阅读 · 0 评论 -
EDCSTFN(用于时空图像融合的增强深度卷积模型)
遥感图像时空融合第一章 DCSTFN:https://editor.csdn.net/md/?articleId=117733388EDCSTFN这篇文章是对DCSTFN的改进。其中的方法有相当可以学习的地方。本文的贡献:1、采用全新的网络结构和新的复合损耗函数对融合结果进行了显著改进。在两个不同领域进行的实验通过与现有算法进行比较,证明了这些改进。2、比较讨论了现有基于深度学习的时空融合模型的优缺点,为未来时空融合研究提供了网络设计指导。目前的问题:用于特征级融合的从CNN模型中预测的图像不原创 2021-06-21 11:37:12 · 1526 阅读 · 0 评论 -
STFDCNN(基于深度卷积神经网络的时空卫星图像融合)
遥感图像时空融合DCSTFN:https://editor.csdn.net/md/?articleId=117733388STFDCNN主要思路:首先,利用神经网络(NLMCNN)学习重采样LTHS与低空间分辨率LTHS之间的非线性映射,然后在低空间分辨率LTHS与原始LTHS之间建立第二超分辨率CNN (SRCNN)。(为了获得最好的结果,预测日期的第一个CNN的输出不直接输入到SRCNN模型中,而是使用高通调制进行调整)文章目录遥感图像时空融合优势一、介绍二、模型1.构造2.方法预测阶段1原创 2021-06-18 22:31:04 · 1741 阅读 · 4 评论 -
DCSTFN(使用深度卷积网络融合高时空遥感图像)
多源遥感图像时空融合(MODIS+Landsat)从今年三月份确定方向,开始看此类的文章,也零零散散看了几篇,始终觉得不太系统,于是就想出一系列的学习笔记,督促自己坚持学习吧,侵权即删,谢谢。时空融合:也就是把高空间分辨率低时间分辨率图像(LTHS)和高时间分辨率低空间分辨率图像(HTLS)融合成高空间分辨率高时间分辨率图像(HTHS)。在遥感领域的分支来说,发展还不是太好,我主要是利用深度学习来进行融合。文章目录多源遥感图像时空融合(MODIS+Landsat)前言一、DCSTFN主要组成部分二、原创 2021-06-09 22:07:16 · 1630 阅读 · 4 评论