文章目录 哪些机器学习算法需要做特征归一化,哪些不需要?为什么?One-hot的作用是什么?为什么不直接使用数字作为表示?树形结构为什么不需要做归一化?在模型评估过程中,过拟合和欠拟合具体指什么现象?降低过拟合和欠拟合的方法?什么是数据不平衡,如何解决?简述逻辑回归线性回归的区别?回归问题常用的性能度量指标分类问题常用的性能度量指标逻辑回归处理多标签分类问题时,一般怎么做?简述kmeans流程为什么必须在神经网络中引入非线性?简述一下随机森林算法的原理随机森林的随机性体现在哪里?随机森林算法的优缺点?简述GBDT原理GBDT如何用于分类?GBDT常用损失函数有哪些?更新中... 哪些机器学习算法需要做特征归一化,哪些不需要?为什么? One-hot的作用是什么?为什么不直接使用数字作为表示? 树形结构为什么不需要做归一化? 在模型评估过程中,过拟合和欠拟合具体指什么现象? 降低过拟合和欠拟合的方法? 什么是数据不平衡,如何解决? 简述逻辑回归线性回归的区别? 回归问题常用的性能度量指标 分类问题常用的性能度量指标 逻辑回归处理多标签分类问题时,一般怎么做? 简述kmeans流程 为什么必须在神经网络中引入非线性? 简述一下随机森林算法的原理 随机森林的随机性体现在哪里? 随机森林算法的优缺点? 简述GBDT原理 GBDT如何用于分类? GBDT常用损失函数有哪些? 更新中…