以泰坦尼克号数据集为例做python可视化EDA

前言

本文以泰坦尼克号数据集为例,做了一下在机器学习算法中一些常用的可视化操作。首先读取数据,然后配合可视化的数据分析。在分析数据之后对数据清洗,包括填充缺失值、机器学习特征选择以及特征相关性分析及其可视化。做了CART模型训练,并将特征的重要性排序、可视化展示。

具体步骤

(最近时间精力有限,具体代码过程见gitee,程序和注解比较详细):以泰坦尼克号数据集为例做python可视化EDA

总结

(如果您发现我写的有错误,欢迎在评论区批评指正)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值