前言
本文以泰坦尼克号数据集为例,做了一下在机器学习算法中一些常用的可视化操作。首先读取数据,然后配合可视化的数据分析。在分析数据之后对数据清洗,包括填充缺失值、机器学习特征选择以及特征相关性分析及其可视化。做了CART模型训练,并将特征的重要性排序、可视化展示。
具体步骤
(最近时间精力有限,具体代码过程见gitee,程序和注解比较详细):以泰坦尼克号数据集为例做python可视化EDA
总结
(如果您发现我写的有错误,欢迎在评论区批评指正)
本文以泰坦尼克号数据集为例,做了一下在机器学习算法中一些常用的可视化操作。首先读取数据,然后配合可视化的数据分析。在分析数据之后对数据清洗,包括填充缺失值、机器学习特征选择以及特征相关性分析及其可视化。做了CART模型训练,并将特征的重要性排序、可视化展示。
(最近时间精力有限,具体代码过程见gitee,程序和注解比较详细):以泰坦尼克号数据集为例做python可视化EDA
(如果您发现我写的有错误,欢迎在评论区批评指正)