Applied Machine Learning in Python Week-2

Applied Machine Learning in Python Week-2

Assignment 2

Part 2 - Classification

Here’s an application of machine learning that could save your life! For this section of the assignment we will be working with the UCI Mushroom Data Set stored in mushrooms.csv. The data will be used to train a model to predict whether or not a mushroom is poisonous. The following attributes are provided:

Attribute Information:

cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s
cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y
bruises?: bruises=t, no=f
odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
gill-attachment: attached=a, descending=d, free=f, notched=n
gill-spacing: close=c, crowded=w, distant=d
gill-size: broad=b, narrow=n
gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w, yellow=y
stalk-shape: enlarging=e, tapering=t
stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?
stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s
stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s
stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
veil-type: partial=p, universal=u
veil-color: brown=n, orange=o, white=w, yellow=y
ring-number: none=n, one=o, two=t
ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z
spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y
population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y
habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d

The data in the mushrooms dataset is currently encoded with strings. These values will need to be encoded to numeric to work with sklearn. We’ll use pd.get_dummies to convert the categorical variables into indicator variables.

from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
from sklearn.datasets import load_breast_cancer
from adspy_shared_utilities import load_crime_dataset

cmap_bold = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])


# synthetic dataset for simple regression
from sklearn.datasets import make_regression
plt.figure()
plt.title('Sample regression problem with one input variable')
X_R1, y_R1 = make_regression(n_samples = 100, n_features=1,
                            n_informative=1, bias = 150.0,
                            noise = 30, random_state=0)
plt.scatter(X_R1, y_R1, marker= 'o', s=50)
plt.show()


# synthetic dataset for more complex regression
from sklearn.datasets import make_friedman1
plt.figure()
plt.title('Complex regression problem with one input variable')
X_F1, y_F1 = make_friedman1(n_samples = 100,
                           n_features = 7, random_state=0)

plt.scatter(X_F1[:, 2], y_F1, marker= 'o', s=50)
plt.show()

# synthetic dataset for classification (binary) 
plt.figure()
plt.title('Sample binary classification problem with two informative features')
X_C2, y_C2 = make_classification(n_samples = 100, n_features=2,
                                n_redundant=0, n_informative=2,
                                n_clusters_per_class=1, flip_y = 0.1,
                                class_sep = 0.5, random_state=0)
plt.scatter(X_C2[:, 0], X_C2[:, 1], c=y_C2,
           marker= 'o', s=50, cmap=cmap_bold)
plt.show()


# more difficult synthetic dataset for classification (binary) 
# with classes that are not linearly separable
X_D2, y_D2 = make_blobs(n_samples = 100, n_features = 2, centers = 8,
                       cluster_std = 1.3, random_state = 4)
y_D2 = y_D2 % 2
plt.figure()
plt.title('Sample binary classification problem with non-linearly separable classes')
plt.scatter(X_D2[:,0], X_D2[:,1], c=y_D2,
           marker= 'o', s=50, cmap=cmap_bold)
plt.show()


# Breast cancer dataset for classification
cancer = load_breast_cancer()
(X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)


# Communities and Crime dataset
(X_crime, y_crime) = load_crime_dataset()
Question 5

Using X_train2 and y_train2 from the preceeding cell, train a DecisionTreeClassifier with default parameters and random_state=0. What are the 5 most important features found by the decision tree?

As a reminder, the feature names are available in the X_train2.columns property, and the order of the features in X_train2.columns matches the order of the feature importance values in the classifier’s feature_importances_ property.

This function should return a list of length 5 containing the feature names in descending order of importance.
Note: remember that you also need to set random_state in the DecisionTreeClassifier.

def answer_five():
    from sklearn.tree import DecisionTreeClassifier

    clf = DecisionTreeClassifier(random_state=0).fit(X_train2, y_train2)
    top_five = clf.feature_importances_.argsort()[::-1][:5]   
    result = list(X_train2.columns[top_five])

    return # Your answer here

步骤详解:

  1. clf.feature_importances_ 是一个np.ndarray类型的结构。
  2. clf.feature_importances_.argsort() 返回该数组升序排序后,各个数字在原数组的序数。
  3. clf.feature_importances_.argsort().[::-1] 我们要最大的五个,所以让已排好序的数组逆序输出,从升序变降序
  4. clf.feature_importances_.argsort().[::-1][:5] 取前五个也就是最大的五个
  5. top_five 是所求数字在原数组的索引,位置,序号, 且我们需要返回一个列表
  6. 所以 result = list(X_train2.columns[top_five])
Question 6

For this question, we’re going to use the validation_curve function in sklearn.model_ selection to determine training and test scores for a Support Vector Classifier (SVC) with varying parameter values. Recall that the validation_curve function, in addition to taking an initialized unfitted classifier object, takes a dataset as input and does its own internal train-test splits to compute results.

Because creating a validation curve requires fitting multiple models, for performance reasons this question will use just a subset of the original mushroom dataset: please use the variables X_subset and y_subset as input to the validation curve function (instead of X_mush and y_mush) to reduce computation time.

The initialized unfitted classifier object we’ll be using is a Support Vector Classifier with radial basis kernel. So your first step is to create an SVC object with default parameters (i.e. kernel=‘rbf’, C=1) and random_state=0. Recall that the kernel width of the RBF kernel is controlled using the gamma parameter.

With this classifier, and the dataset in X_subset, y_subset, explore the effect of gamma on classifier accuracy by using the validation_curve function to find the training and test scores for 6 values of gamma from 0.0001 to 10 (i.e. np.logspace(-4,1,6)). Recall that you can specify what scoring metric you want validation_curve to use by setting the “scoring” parameter. In this case, we want to use “accuracy” as the scoring metric.

For each level of gamma, validation_curve will fit 3 models on different subsets of the data, returning two 6x3 (6 levels of gamma x 3 fits per level) arrays of the scores for the training and test sets.

Find the mean score across the three models for each level of gamma for both arrays, creating two arrays of length 6, and return a tuple with the two arrays.

e.g.

if one of your array of scores is

array([[ 0.5, 0.4, 0.6],
[ 0.7, 0.8, 0.7],
[ 0.9, 0.8, 0.8],
[ 0.8, 0.7, 0.8],
[ 0.7, 0.6, 0.6],
[ 0.4, 0.6, 0.5]])

it should then become

array([ 0.5, 0.73333333, 0.83333333, 0.76666667, 0.63333333, 0.5])’

This function should return one tuple of numpy arrays (training_scores, test_scores) where each array in the tuple has shape (6,).

def answer_six():
    from sklearn.svm import SVC
    from sklearn.model_selection import validation_curve
    # Your code here
    clf = SVC(kernel='rbf', C=1, random_state=0)
    param_range = np.logspace(-4,1,6)
    train_scores, test_scores = validation_curve(SVC(), X_subset, y_subset,
                                            param_name='gamma',
                                            param_range=param_range, cv=3, scoring="accuracy")
    train_scores_mean = np.mean(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    return (train_scores_mean, test_scores_mean) 

步骤详解:

  1. 首先建立一个SVC对象,object = sklearn.svm.SVC(C=1.0, kernel=’rbf’, random_state=None), SVM第一个重要参数C设为1,默认也是1, 核函数选RBF。
  2. 其次 考虑gamma, 本题要求从0.0001到10, 使用np.logsapce轻松获得,
    numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
    0.0001 = basestart 所以start = -4, 10=basestop 所以 stop = 1, 我们要求有六个数,所以 num = 6, ([-4, -3, -2, -1, 0, 1])
  3. 然后是要求使用 validation_curve,
    sklearn.model_selection.validation_curve(estimator, X, y, param_name, param_range, cv=’warn’, scoring=None)
    estimator 输入一个分类器的对象,cv 默认 3-fold , scoring 取 accuracy
  4. numpy.mean(a, axis=None, dtype=None, keepdims=<‘No’ value>)
    a是数组,axis=0就是按列求平均,axis=1 按行
Question 7

Based on the scores from question 6, what gamma value corresponds to a model that is underfitting (and has the worst test set accuracy)? What gamma value corresponds to a model that is overfitting (and has the worst test set accuracy)? What choice of gamma would be the best choice for a model with good generalization performance on this dataset (high accuracy on both training and test set)?

Hint: Try plotting the scores from question 6 to visualize the relationship between gamma and accuracy. Remember to comment out the import matplotlib line before submission.

This function should return one tuple with the degree values in this order: (Underfitting, Overfitting, Good_Generalization) Please note there is only one correct solution.

def answer_seven():
    
    param_range = np.logspace(-4, 1, 6)
    
    # Read in the results of answer_six
    training_scores, test_scores = answer_six()
    
    # Sort the scores
    train_scores_sorted = np.sort(training_scores)
    test_scores_sorted = np.sort(test_scores)
    
    # Initialize the values
    Underfitting = 0
    Overfitting = 0
    Good_Generalization = 0
    min_train_scores = np.min(training_scores)
    max_train_scores = np.max(training_scores)
    min_test_scores = np.max(test_scores)
    max_test_scores = np.max(test_scores)    
    
    for gam, data in zip(param_range, zip(training_scores, test_scores)):
        if data[0] <= train_scores_sorted[1] and data[1] <= test_scores_sorted[1]:
            Underfitting = gam
        if data[0] > train_scores_sorted[1] and data[1] <= test_scores_sorted[1]:
            Overfitting = gam
        if data[0] == max_train_scores and data[1] == max_test_scores:
            Good_Generalization = gam
    
    return Underfitting, Overfitting, Good_Generalization

这题没啥好说的,看就行了,数据量大就用上面的代码自己弄一下

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Scala:Applied Machine Learning by Pascal Bugnion English | 23 Feb. 2017 | ISBN-13: 9781787126640 | 1843 Pages | EPUB/PDF (conv) | 33.15 MB Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest features. About This Book Build functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples provided Leverage your expertise in Scala programming to create and customize your own scalable machine learning algorithms Experiment with different techniques; evaluate their benefits and limitations using real-world financial applications Get to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainability Who This Book Is For This Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning. What You Will Learn Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Deploy scalable parallel applications using Apache Spark, loading data from HDFS or Hive Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to perform technical analysis of financial markets Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail This Learning Path aims to put the entire world of machine learning with Scala in fron
Machine Learning in Python: Essential Techniques for Predictive Analysis Paperback: 360 pages Publisher: Wiley; 1 edition (April 27, 2015) Language: English ISBN-10: 1118961749 ISBN-13: 978-1118961742 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.
Title: Machine Learning in Python: Essential Techniques for Predictive Analysis Author: Michael Bowles Length: 360 pages Edition: 1 Language: English Publisher: Wiley Publication Date: 2015-04-20 ISBN-10: 1118961749 ISBN-13: 9781118961742 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more acces
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值