Coursera | Applied Machine Learning in Python(University of Michigan)| Quiz答案

   密歇根大学的 Applied Data Science with Python 专项课程,共有5门课程,目前第2、3门课程Applied Plotting, Charting & Data Representation in Python和Applied Machine Learning in Python一起薅 😃
在这里插入图片描述在这里插入图片描述
   这个课程与第一门Coursera | Introduction to Data Science in Python(University of Michigan)类似,每周Quiz和Assignment。
   所有assignment相关链接:
  Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment1
  Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment2
  Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment3
  Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment4
   有时间(需求)就把所有代码放到github上
   嘿,顺便推广下自己的博客,以后CSDN的文章都会放到自己的博客的。

Quiz答案

  不同于Coursera | Introduction to Data Science in Python(University of Michigan)| Quiz答案。该课程Quiz是coursera平台改,当场出成绩,然后可以刷到满分为止~

Module1 : Fundamentals of Machine Learning - Intro to Scikit Learn

  叨下被坑经历,这里的多选题是不定项选择,也就是只选一个也是可以的。
在这里插入图片描述

Module2 : Supervised Machine Learning - Part 1

  继续叨下被坑经历,第10题有两种问题啊,大家仔细看题。

在这里插入图片描述

Module3 : Evaluation

  叨下可能的坑,第8题有两种问题啊,大家仔细看题,注意’micro’还是’macro’,第9题,做错了好几次才做出来,气到昏厥。
在这里插入图片描述

Module4 : Supervised Machine Learning - Part 2

在这里插入图片描述

   欢迎评论区讨论呀~

Title: Machine Learning in Python: Essential Techniques for Predictive Analysis Author: Michael Bowles Length: 360 pages Edition: 1 Language: English Publisher: Wiley Publication Date: 2015-04-20 ISBN-10: 1118961749 ISBN-13: 9781118961742 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more acces
Machine Learning in Python: Essential Techniques for Predictive Analysis Paperback: 360 pages Publisher: Wiley; 1 edition (April 27, 2015) Language: English ISBN-10: 1118961749 ISBN-13: 978-1118961742 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值