计算机图形学

上课顺序代码实现:

楼主自己的数据结构有些弱,没办法完全实现图形学的代码,只好参考了别人算法思路,以下是搂主代码

一.直线生成算法

DDA算法代码(原文地址)http://blog.csdn.net/orbit/article/details/7185982

注意点:

1.巧妙地实现x轴与y轴的转换

2.找到直线的起始点与终点,然后开始循环

#include<iostream>
using namespace std;
void DDA_line(float x1,float y1,float x2,float y2)
{
double k,dx,dy,xstart,ystart,xend,yend;
dx=x1-x2;
dy=y1-y2;
if(fabs(dy)<fabs(dx))
{
k=dy/dx;
if(dx>0)
{
xstart=x2;
ystart=y2;
xend=x1;
}
else
{
xstart=x1;
ystart=y1;
xend=x2;
}
while(xstart<xend)
{
SetDevicePixel((int)x, ROUND_INT(y));
             xstart=x+1;
y=y+k;
}
}
else 
{
k=dx/dy;
if(dy>0)
{
   xstart=x2;
ystart=y2;
yend=y1;
}
else
{
xstart=x1;
ystart=y1;
yend=y2;
}
while(ystart<yend)
{
SetDevicePixel((int)x, ROUND_INT(y));
              ystart=y+1;
 x=x+k;
}
}
}


缺点是每次四舍五入,误差大。

中点直线算法:

1、画点(x1, y1);  计算误差初值p1=2dy-dx;    
2、求直线的下一点位置:    
   Xi+1 = Xi+1;    
   如果 pi > 0   则Yi+1 = Y+ 1;   
   否则Yi+1 = Yi;    
   画点(Xi+1, Yi+1 );      
3、求下一个误差pi+1;     
  如果  pi>0 , 则pi+1 = pi+2(dy – dx);    
  否则pi+1 = pi+2dy;    
4、如果没有结束,则转到步骤2;否则结束算法。

 void Bresenham_Line(int x1, int y1, int x2, int y2)
 {
double dx,dy,xstart,ystart,xend,yend,p;
dx=x1-x2;
dy=y1-y2;
p=2*dy-dx;
if(dx>0)
{xstart=x2;ystart=y2;xend=x2;}
while(xstart<xend)
{
SetDevicePixel(x, y); 
xstart++;
if(p>0 )
p=p+2*(dy-dx);
else 
{
p=p+2*dy;
y=y+1;
}


计算多边形重心

1、typedef的使用:是对int double等的数据类型的重命名,这里是对struct Point 这个结构的重命名

2.计算三角形面积时,命名了Area这个求面积函数,利用了定理1,利用点的坐标表达了面积的计算

定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。该三角形的面积为:

  S =  ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;

3.计算多边形的重心

代码如下:

#include<iostream>
#include<string>
using namespace std;
#define esp 1e-7
struct Point
{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
void input()
{
cin>>x>>y;
}
void output()
{
cout<<x<<y;
}
};
typedef Point vector;
vector operator - (vector A,vector B)
{
return vector(A.x-B.x,A.y-B.y);
}
double Cross(vector A,vector B)
{
return A.x*B.y-A.y*B.x;
}
double Area(Point A,Point B,Point C)
{
return Cross(B-A,C-A)/2.0;
}
Point Calbarycenter(Point *p,int n)
{
Point G;
G.x=0;G.y=0;
double sum=0,s;
for(int i=1;i<n-1;i++)
{
s=Area(p[0],p[i],p[i+1]);
sum+=s;
G.x+=(p[0].x+p[i].x+p[i+1].x)*s;
G.y+=(p[0].y+p[i].y+p[i+1].y)*s;
}
G.x=G.x/sum/3.0;
G.y=G.y/sum/3.0;
return G;
}
int main()
{
Point a[10005];
int T,n;
cin>>T;
Point G;
while(T--)
{
cin>>n;
for(int i=0;i<n;i++)
{a[i].input();
}
G=Calbarycenter(a,n);
printf("%.2lf %.2lf\n",G.x,G.y);
}
return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值