上课顺序代码实现:
楼主自己的数据结构有些弱,没办法完全实现图形学的代码,只好参考了别人算法思路,以下是搂主代码
一.直线生成算法
DDA算法代码(原文地址)http://blog.csdn.net/orbit/article/details/7185982
注意点:
1.巧妙地实现x轴与y轴的转换
2.找到直线的起始点与终点,然后开始循环
#include<iostream>
using namespace std;
void DDA_line(float x1,float y1,float x2,float y2)
{
double k,dx,dy,xstart,ystart,xend,yend;
dx=x1-x2;
dy=y1-y2;
if(fabs(dy)<fabs(dx))
{
k=dy/dx;
if(dx>0)
{
xstart=x2;
ystart=y2;
xend=x1;
}
else
{
xstart=x1;
ystart=y1;
xend=x2;
}
while(xstart<xend)
{
SetDevicePixel((int)x, ROUND_INT(y));
xstart=x+1;
y=y+k;
}
}
else
{
k=dx/dy;
if(dy>0)
{
xstart=x2;
ystart=y2;
yend=y1;
}
else
{
xstart=x1;
ystart=y1;
yend=y2;
}
while(ystart<yend)
{
SetDevicePixel((int)x, ROUND_INT(y));
ystart=y+1;
x=x+k;
}
}
}
缺点是每次四舍五入,误差大。
中点直线算法:
1、画点(x1, y1); 计算误差初值p1=2dy-dx;
2、求直线的下一点位置:
Xi+1 = Xi+1;
如果 pi > 0 则Yi+1 = Yi + 1;
否则Yi+1 = Yi;
画点(Xi+1, Yi+1 );
3、求下一个误差pi+1;
如果 pi>0 , 则pi+1 = pi+2(dy – dx);
否则pi+1 = pi+2dy;
4、如果没有结束,则转到步骤2;否则结束算法。
void Bresenham_Line(int x1, int y1, int x2, int y2)
{
double dx,dy,xstart,ystart,xend,yend,p;
dx=x1-x2;
dy=y1-y2;
p=2*dy-dx;
if(dx>0)
{xstart=x2;ystart=y2;xend=x2;}
while(xstart<xend)
{
SetDevicePixel(x, y);
xstart++;
if(p>0 )
p=p+2*(dy-dx);
else
{
p=p+2*dy;
y=y+1;
}
计算多边形重心
1、typedef的使用:是对int double等的数据类型的重命名,这里是对struct Point 这个结构的重命名
2.计算三角形面积时,命名了Area这个求面积函数,利用了定理1,利用点的坐标表达了面积的计算
定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。该三角形的面积为:
S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;
3.计算多边形的重心
代码如下:
#include<iostream>
#include<string>
using namespace std;
#define esp 1e-7
struct Point
{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
void input()
{
cin>>x>>y;
}
void output()
{
cout<<x<<y;
}
};
typedef Point vector;
vector operator - (vector A,vector B)
{
return vector(A.x-B.x,A.y-B.y);
}
double Cross(vector A,vector B)
{
return A.x*B.y-A.y*B.x;
}
double Area(Point A,Point B,Point C)
{
return Cross(B-A,C-A)/2.0;
}
Point Calbarycenter(Point *p,int n)
{
Point G;
G.x=0;G.y=0;
double sum=0,s;
for(int i=1;i<n-1;i++)
{
s=Area(p[0],p[i],p[i+1]);
sum+=s;
G.x+=(p[0].x+p[i].x+p[i+1].x)*s;
G.y+=(p[0].y+p[i].y+p[i+1].y)*s;
}
G.x=G.x/sum/3.0;
G.y=G.y/sum/3.0;
return G;
}
int main()
{
Point a[10005];
int T,n;
cin>>T;
Point G;
while(T--)
{
cin>>n;
for(int i=0;i<n;i++)
{a[i].input();
}
G=Calbarycenter(a,n);
printf("%.2lf %.2lf\n",G.x,G.y);
}
return 0;
}