转载:https://www.jianshu.com/p/a84c4522c187
链路收集大体逻辑
这里先不分析skywalking是如何自动收集数据的,而是说一下agent在收集后如何存储与发送给collector,这部分的架构关系到性能开销与对服务的影响
大体逻辑如下:
agent内部缓存维护了一个生产消费者,收集数据时将生产的数据按分区放到缓存中,消费者用多线程消费数据,将缓存的数据封装成grpc对象发送给collector
链路数据接收与发送
数据的接收与发送主要在类TraceSegmentServiceClient中处理
其中的一个重要属性是DataCarrier,它来实现的生产消费模式
private volatile DataCarrier<TraceSegment> carrier;
大致结构如下
DataCarrier.png
DataCarrier
属性如下:
//一个buffer的大小
private final int bufferSize;
//channel的大小
private final int channelSize;
private Channels<T> channels;
//消费者线程池封装
private ConsumerPool<T> consumerPool;
private String name;
方法#produce生产数据
public boolean produce(T data) {
if (consumerPool != null) {
if (!consumerPool.isRunning()) {
return false;
}
}
return this.channels.save(data);
}
channel的save方法
public boolean save(T data) {
//计算放在channel哪个位置
int index = dataPartitioner.partition(bufferChannels.length, data);
//重试次数
int retryCountDown = 1;
if (BufferStrategy.IF_POSSIBLE.equals(strategy)) {
int maxRetryCount = dataPartitioner.maxRetryCount();
if (maxRetryCount > 1) {
retryCountDown = maxRetryCount;
}
}
for (; retryCountDown > 0; retryCountDown--) {
//保存成功返回true
if (bufferChannels[index].save(data)) {
return true;
}
}
return false;
}
进入到Buffer的save方法,TraceSegmentServiceClient用的策略是IF_POSSIBLE,缓存位置还有值直接返回,所以消费不过来会丢失部分数据
boolean save(T data) {
//数组位置自增
int i = index.getAndIncrement();
//不为空的处理
if (buffer[i] != null) {
switch (strategy) {
case BLOCKING:
boolean isFirstTimeBlocking = true;
while (buffer[i] != null) {
if (isFirstTimeBlocking) {
isFirstTimeBlocking = false;
for (QueueBlockingCallback<T> callback : callbacks) {
callback.notify(data);
}
}
try {
Thread.sleep(1L);
} catch (InterruptedException e) {
}
}
break;
case IF_POSSIBLE:
return false;
case OVERRIDE:
default:
}
}
//写入缓存
buffer[i] = data;
return true;
}
DataCarrier的consume方法初始化消费者线程池
public DataCarrier consume(Class<? extends IConsumer<T>> consumerClass, int num, long consumeCycle) {
if (consumerPool != null) {
consumerPool.close();
}
consumerPool = new ConsumerPool<T>(this.name, this.channels, consumerClass, num, consumeCycle);
consumerPool.begin();
return this;
}
参数consumerClass就是TraceSegmentServiceClient类自己,实现具体的消费方法,初始化以后线程池就启动了
consumerPool方法begin
public void begin() {
if (running) {
return;
}
try {
lock.lock();
//把channel分给不同的thread
this.allocateBuffer2Thread();
for (ConsumerThread consumerThread : consumerThreads) {
consumerThread.start();
}
running = true;
} finally {
lock.unlock();
}
}
cusumerThread的run方法
@Override
public void run() {
running = true;
while (running) {
boolean hasData = consume();
if (!hasData) {
try {
Thread.sleep(consumeCycle);
} catch (InterruptedException e) {
}
}
}
consume();
consumer.onExit();
}
最终会调到的TraceSegmentServiceClient这个消费者的consume方法,将TraceSegment转换成grpc对象发送给collector
@Override
public void consume(List<TraceSegment> data) {
if (CONNECTED.equals(status)) {
final GRPCStreamServiceStatus status = new GRPCStreamServiceStatus(false);
StreamObserver<UpstreamSegment> upstreamSegmentStreamObserver = serviceStub.collect(new StreamObserver<Downstream>() {
@Override
public void onNext(Downstream downstream) {
}
@Override
public void onError(Throwable throwable) {
status.finished();
if (logger.isErrorEnable()) {
logger.error(throwable, "Send UpstreamSegment to collector fail with a grpc internal exception.");
}
ServiceManager.INSTANCE.findService(GRPCChannelManager.class).reportError(throwable);
}
@Override
public void onCompleted() {
status.finished();
}
});
for (TraceSegment segment : data) {
try {
UpstreamSegment upstreamSegment = segment.transform();
upstreamSegmentStreamObserver.onNext(upstreamSegment);
} catch (Throwable t) {
logger.error(t, "Transform and send UpstreamSegment to collector fail.");
}
}
upstreamSegmentStreamObserver.onCompleted();
status.wait4Finish();
segmentUplinkedCounter += data.size();
} else {
segmentAbandonedCounter += data.size();
}
printUplinkStatus();
}
channel
channel中包含一个Buffer数组:
//Buffer数组
private final Buffer<T>[] bufferChannels;
//数据分区策略
private IDataPartitioner<T> dataPartitioner;
//Buffer策略
private BufferStrategy strategy;
Buffer对象
public class Buffer<T> {
//对象数组
private final Object[] buffer;
private BufferStrategy strategy;
//位置标记
private AtomicRangeInteger index;
private List<QueueBlockingCallback<T>> callbacks;
...
抽样服务SamplingService
作用是对TraceSegment进行抽样,链路跟踪必须要考虑的功能,服务压力大时全量收集会占用cpu、内存、网络等资源
agent通过agent.config
配置档中的agent.sample_n_per_3_secs
设置每三秒收集的TraceSegment的个数,大于0为开启状态,默认全量收集
初始化一个3秒的定时任务
@Override
public void boot() throws Throwable {
if (scheduledFuture != null) {
scheduledFuture.cancel(true);
}
//大于0开启抽样
if (Config.Agent.SAMPLE_N_PER_3_SECS > 0) {
on = true;
this.resetSamplingFactor();
ScheduledExecutorService service = Executors
.newSingleThreadScheduledExecutor(new DefaultNamedThreadFactory("SamplingService"));
//定时任务
scheduledFuture = service.scheduleAtFixedRate(new RunnableWithExceptionProtection(new Runnable() {
@Override
public void run() {
resetSamplingFactor();
}
}, new RunnableWithExceptionProtection.CallbackWhenException() {
@Override public void handle(Throwable t) {
logger.error("unexpected exception.", t);
}
}), 0, 3, TimeUnit.SECONDS);
logger.debug("Agent sampling mechanism started. Sample {} traces in 3 seconds.", Config.Agent.SAMPLE_N_PER_3_SECS);
}
}
抽样逻辑
public boolean trySampling() {
if (on) {
int factor = samplingFactorHolder.get();
if (factor < Config.Agent.SAMPLE_N_PER_3_SECS) {
boolean success = samplingFactorHolder.compareAndSet(factor, factor + 1);
return success;
} else {
return false;
}
}
return true;
}
skywalking的agent不支持按比例抽样,比较遗憾