隐马尔可夫模型(算法流程&实例演示)

本文详细介绍了隐马尔可夫模型(HMM)的前向算法、后向算法、Viterbi算法以及Baum Welch算法的流程,并通过实例演示如何解决Evaluation、Decoding等问题。此外,还讨论了滤波、平滑和预测问题,以及参数估计的Baum Welch算法。
摘要由CSDN通过智能技术生成

隐马尔可夫模型的Inference问题一共五个,涉及的算法有前向算法、后向算法和Viterbi算法,Learning问题涉及的算法是EM算法。我们这一篇介绍具体的算法流程以及通过一个案例来加深对算法的理解。

HMM系列传送门:

隐马尔可夫模型(背景介绍)

隐马尔可夫模型(前向算法与后向算法)

隐马尔可夫模型(Baum Welch算法与Viterbi算法)

隐马尔可夫模型(模型推断五大问题)

例子阐述

假设有3个盒子(隐状态),编号1,2,3,每个盒子的红色球和白色球数量如下:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值