推荐系统的冷启动与效果评估

本文探讨推荐系统的冷启动问题,包括用户、物品和系统冷启动,并提出六种解决方案,如基于热门数据、用户信息和上下文。同时,介绍了推荐系统效果评估的三种方法:用户调研、在线评估(ABTest)和离线评估,强调了评估过程中的关键指标和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.冷启动问题是指用户在没有历史数据的前提下做个性化推荐

2.冷启动一般分为用户冷启动物品冷启动系统冷启动

3.推荐系统效果评估分为用户调研在线评估离线评估

4.用户调研要尽可能保证测试样本的代表性和实验的双盲性

5.在线评估常用方法是ABTest,常用指标是点击率、转化率和成交额

6.ABTest要注意证实偏差、幸存偏差、辛普森悖论和均值回归现象

推荐系统的冷启动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值