1.函数极限扩充后一共存在24种表达形式,可看成对变量x的6种情形与f(x)的4种情形的组合
2.保序性与夹逼性在极限是无穷大量情况下不生效,四则运算需要排除"待定型"
3.熟练掌握第一类和第二类重要极限
4.函数极限的柯西收敛原理有三种表达形式,利用数列柯西收敛原理与海涅定理证明
今天我们把函数极限的内容更新完毕。
1
函数极限的扩充
我们从函数在一点的极限细分为左极限和右极限,一共三种极限。在此基础上,我们还能进一步扩充函数极限:
这样就6种情况。这些体现在极限分析表述哪里呢,我们再回顾一下函数极限定义:
红框就是对x的描述,以上的6种的表述变为:
剩下的是对极限的描述,有4种:
这样一共24种组合,可以把函数极限的定义扩充完毕。我们来几道例题看看:
例1
例2
对于函数极限的扩充,需要注意三点。第一就是关于函数性质,关于保序性和夹逼性,要排除无穷大量的情况,即保序性和夹逼性可以用在以下三种情形:
第二关于函数极限的四则运算需要排除“待定型”,即以下六种情况:
第三点就是关于海涅定理依然适用。比如对于x趋于正无穷大量时海涅定理表述如下:
2
第二类重要极限
例3
这里想表达的是,当x趋于无穷时,多项式只需要看最高次数项即可,极限由最高次数项决定。当x趋于0时,多项式的极限由最低次数项决定。
例4
函数极限开篇的时候,我们就介绍了第一类重要极限,除此之外,还有第二类重要极限.
3
柯西收敛原理
表达数列收敛充分必要条件的是柯西收敛原理:
数列收敛的充分必要条件是该数列为基本数列
传送门:收敛准则(四)
在函数极限中,柯西收敛原理有三种形式:
我们证明第一种形式,其余类似。
证明充分性的时候,红色部分表明了f(xn)是基本数列,根据数列柯西收敛原理可以知道数列{f(xn)}收敛。然后黄色部分表达了归结原则的必要条件:对任意是无穷大量的数列都收敛。所以可得到函数极限收敛。
微积分的反常积分需要用到函数的柯西收敛原理,请必须深刻理解并掌握。