函数极限(三)

本文详细介绍了函数极限的24种表达方式,涉及保序性、夹逼性、四则运算规则,以及柯西收敛原理的三种形式。通过实例演示,探讨了无穷大量、多项式极限及第二类重要极限。务必掌握的第一类和第二类重要极限也在文中详解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.函数极限扩充后一共存在24种表达形式,可看成对变量x的6种情形与f(x)的4种情形的组合

2.保序性与夹逼性在极限是无穷大量情况下不生效,四则运算需要排除"待定型"

3.熟练掌握第一类和第二类重要极限

4.函数极限的柯西收敛原理有三种表达形式,利用数列柯西收敛原理与海涅定理证明

今天我们把函数极限的内容更新完毕。


传送门: 函数极限(一) 函数极限(二)

1

函数极限的扩充

我们从函数在一点的极限细分为左极限和右极限,一共三种极限。在此基础上,我们还能进一步扩充函数极限:

007eeaea4c05f703a957dbd58bd76c0f.png

这样就6种情况。这些体现在极限分析表述哪里呢,我们再回顾一下函数极限定义:

279fd3df10e80fe2fe8f04f11a854491.png

红框就是对x的描述,以上的6种的表述变为:

5c500f00a9a7637933e344f271fd4b79.png

剩下的是对极限的描述,有4种:

20952a689116aecd202334ee09b86f6e.png

这样一共24种组合,可以把函数极限的定义扩充完毕。我们来几道例题看看:

  • 例1

e7630d3ec0de3698ebaf54f67dcd677b.png

  • 例2

c69e4fd4a46f969fb8bbd56ebb055733.png

对于函数极限的扩充,需要注意三点。第一就是关于函数性质,关于保序性和夹逼性,要排除无穷大量的情况,即保序性夹逼性可以用在以下三种情形:

6574adf57122965e895747d0bd394e68.png

第二关于函数极限的四则运算需要排除“待定型”,即以下六种情况:

8fa0fbee5601af508ee3a017cf3697a8.png

第三点就是关于海涅定理依然适用。比如对于x趋于正无穷大量时海涅定理表述如下:

bf711e482b6cae53f325015f0a495f1e.png

2

第二类重要极限

  • 例3

c445f7d4a5f49ec12e0f6214f5ef916f.png

这里想表达的是,当x趋于无穷时,多项式只需要看最高次数项即可,极限由最高次数项决定。当x趋于0时,多项式的极限由最低次数项决定。

  • 例4

函数极限开篇的时候,我们就介绍了第一类重要极限,除此之外,还有第二类重要极限.

aaef79bd7a5998632d534dc7c0e5de68.png

3

柯西收敛原理

表达数列收敛充分必要条件的是柯西收敛原理:

数列收敛的充分必要条件是该数列为基本数列

92bdf17ed6bf92fa7105a0a2c37e0106.png

传送门:收敛准则(四)

在函数极限中,柯西收敛原理有三种形式:

406cda1d2cde722aa81f010a966b98d6.png

我们证明第一种形式,其余类似。

ac07de56a56bad8a0acbd2c3bb82a0da.png

证明充分性的时候,红色部分表明了f(xn)是基本数列,根据数列柯西收敛原理可以知道数列{f(xn)}收敛。然后黄色部分表达了归结原则的必要条件:对任意是无穷大量的数列都收敛。所以可得到函数极限收敛。

微积分的反常积分需要用到函数的柯西收敛原理,请必须深刻理解并掌握。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值