AF3 OpenFoldDataset类looped_samples方法解读

AlphaFold3 data_modules 模块的 OpenFoldDataset 类的 looped_samples 方法用于 循环采样数据,确保数据能被不断地提供,适用于 PyTorch 的 DataLoader 在训练过程中迭代读取数据。dataset_idx 指定了当前要处理的数据集(即 self.datasets[dataset_idx]

源代码:

    def looped_samples(self, dataset_idx):
        max_cache_len = int(self.epoch_len * self.probabilities[dataset_idx])
        dataset = self.datasets[dataset_idx]
        idx_iter = self.looped_shuffled_dataset_idx(len(dataset))
        chain_data_cache = dataset.chain_data_cache
        while True:
            weights = []
            idx = []
            for _ in range(max_cache_len):
                candidate_idx = next(idx_iter)
                chain_id = dataset.idx_to_chain_id(candidate_idx)
                chain_data_cache_entry = chain_data_cache[chain_id]
                if not self.deterministic_train_filter(chain_data_cache_entry):
                    continue

                p = self.get_stochastic_train_filter_prob(
                    chain_data_cache_entry,
                )
                weights.append([1. - p, p])
                idx.append(candidate_idx)

            samples = torch.multinomial(
                torch.tensor(weights),
                num_samples=1,
                generator=self.generator,
            )
            samples = samples.squeeze()

            cache = [i for i, s in zip(idx, samples) if s]

            for datapoint_idx in cache:
                yield datapoint_idx

源码解读:

max_cache_len = int(self.epoch_len * self.probabilities[dataset_idx])
  • epoch_len 是一个训练周期(epoch)中期望的样本总数。

  • self.probabilitie

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值