R语言卡方(chisq)分布

本文介绍了标准正态分布的基本概念,重点阐述了当多个独立随机变量服从标准正态分布时,其平方和形成卡方分布的特性。通过实例演示了如何使用R语言的rchisq、dchisq和pchisq函数进行抽样、概率密度计算及累积概率查询。涵盖了卡方分布的函数使用和非中心卡方分布的介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

若n个相互独立的随机变量ξ₁,ξ₂,...,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。

 

The (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-squared (chi^2) distribution with df degrees of freedom and optional non-centrality parameter ncp.

Usage

dchisq(x, df, ncp = 0, log = FALSE)
pchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp = 0)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

df

degrees of freedom (non-negative, but can be non-integer).

ncp

non-centrality parameter (non-negative).

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

####卡方(chisq)分布
# 1.卡方分布中抽样函数rchisq
n = 100
df <- 10
rchisq(n, df, ncp = 0)

# 2.卡方分布概率密度函数
x <- seq(0,30,0.1) # x为非负整数,表达次数。
y <- dchisq(x,df)
plot(x,y)

# 3.卡方分布累积概率
x <- seq(1,20,0.1)
plot(x,dchisq(x,df=10))
# P[X ≤ x]
pchisq(5, df=10)
# P[X > x]
pchisq(5, df=10,lower.tail = FALSE)

# probabilities p are given as log(p).
pchisq(5, df=10,log.p = TRUE)

# 4.qchisq函数(pchisq的反函数)
# 累积概率为0.95时的x值
qchisq(0.95, df=1)
qchisq(0.95, df=10)
qchisq(0.95, df=100)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值