Leetcode-11. Container With Most Water

Given n non-negative integers a1, a2, ..., a, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example:

Input: [1,8,6,2,5,4,8,3,7]
Output: 49

Solutions:

//利用双指针移动,时间复杂度为O(n)
/*原理为 area = (end - start) * shortHeight; 
例如start<end时,面积最小值不可能出现在以start为起点,
end往中间移动所围成的边。
理由由下:preArea = (end - start) * preShortHeight,
backArea = (end-start-i) * backShortHeight,
i为继续往中间移动次数,由(end-start-i)<end-start,
preShortHeight<=backShortHeight,则preArea<backArea。
则面积出现最大只可能出现在较短者继续往中间移动,因为靠近中间移动时,
shortHeight增大幅度可能远远大于(end-start),可能出现面积更大处。
*/
int maxArea(int* height, int heightSize){
    int maxArea = 0,shortHeight = 0;
    int start = 0, end = heightSize - 1;
    while(start<end){
        shortHeight = height[start]>height[end]?height[end]:height[start];
        if (maxArea<(end - start)*shortHeight) {
            maxArea = (end - start)*shortHeight;
        }
        if(height[start]<height[end]){
            start++;
        }else{
            end--;
        }
   }
    return maxArea;
}
//暴力破解,时间复杂度为O(n^2)
int maxArea(int* height, int heightSize){
    int maxArea = 0,shortHeight = 0;
    for (int i = 0; i<heightSize; i++) {
        for (int j = i+1; j<heightSize; j++) {
            shortHeight = height[i]>height[j]?height[j]:height[i];
            if((j-i)*shortHeight>maxArea){
                maxArea = (j-i)*shortHeight;
            }
        }
    }
    return maxArea;
}```


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值