题目: 将圆分成 n n 个扇形,用 种不同颜色染色,并且相邻的扇形不同色,问有多少种着色方法。
分析: 假设将圆分成
n
n
个扇形符合题意的着色方法有 种。
对第一个扇形着色有
m
m
种,第二个扇形有 种,第三个扇形有
(m−1)
(
m
−
1
)
种
……
…
…
第
n
n
个扇形有 种,但是这样着色会存在第
n
n
个扇形和第一个扇形同颜色的情况,我们应该减去这样的情况。若第 个扇形和第一个扇形同色,把这两个扇形合成一块,这就相当于
(n−1)
(
n
−
1
)
个扇形用
m
m
种颜色着色问题,它的解是 。由上可得出递推公式
An=m∗(m−1)n−1−An−1
A
n
=
m
∗
(
m
−
1
)
n
−
1
−
A
n
−
1
,对这个式子移项化简得到
An−(m−1)n=−(An−1−(m−1)n−1)
A
n
−
(
m
−
1
)
n
=
−
(
A
n
−
1
−
(
m
−
1
)
n
−
1
)
,由此得到
An−(m−1)n
A
n
−
(
m
−
1
)
n
是公比为
−1
−
1
的等比数列。
当
n=1
n
=
1
,
A1=m
A
1
=
m
;
当
n=2
n
=
2
,
A2=m(m−1)
A
2
=
m
(
m
−
1
)
;
当
n≥3
n
≥
3
,
An−(m−1)n=[A2−(m−1)2]∗(−1)n−2
A
n
−
(
m
−
1
)
n
=
[
A
2
−
(
m
−
1
)
2
]
∗
(
−
1
)
n
−
2
,化简得到
An=(m−1)n+(m−1)∗(−1)n
A
n
=
(
m
−
1
)
n
+
(
m
−
1
)
∗
(
−
1
)
n
当然要是直接写算法求解的话,得到上面的递推公式就可以了,不需要解出后面的通项公式。
public int colorCount(int n, int m) {
if (n <= 0)
return 0;
if (n == 1)
return m;
int[] ans = new int[n + 1];
ans[1] = m;
ans[2] = m * (m - 1);
for (int i = 3; i <= n; i++) {
ans[i] = (int) (m * Math.pow(m - 1, i - 1) - ans[i - 1]);
}
return ans[n];
}