书生大模型-进阶岛第6关:MindSearch 快速部署

1 MindSearch概念

MindSearch 是一个开源的 AI 搜索引擎框架,具有与 Perplexity.ai Pro 相同的性能。我们可以轻松部署它来构建自己的专属搜索引擎,可以基于闭源的LLM(如GPT、Claude系列),也可以使用开源的LLM(如经过专门优化的InternLM2.5 系列模型,能够在MindSearch框架中提供卓越的性能) 最新版的MindSearch拥有以下特性:
任何你想知道的问题: MindSearch 通过搜索解决你在生活中遇到的各种问题
深度知识探索: MindSearch 通过数百个网页的浏览,提供更广泛、深层次的答案
透明的解决方案路径: MindSearch 提供了思考路径、搜索关键词等完整的内容,提高回复的可信度和可用性。
多种用户界面: 为 用户提供各种接口,包括 React、Gradio、Streamlit 和本地调试。根据需要选择任意类型。
动态图构建过程: MindSearch 将用户查询分解为图中的子问题节点,并根据 WebSearcher 的搜索结果逐步扩展图。

关于 MindSearch 的使用,可以看这篇文章

2 开发环境配置

这里我们使用Github CodeSpace和硅基流动提供的免费 InternLM2.5-7B-Chat API 服务来部署 MindSearch。

GitHub Codespaces是 GitHub 提供基于 Visual Studio Code的云端开发环境,允许开发者在云端创建和运行完整的开发环境,它为开发者提供了一个一致、高效且可扩展的云端开发解决方案,使开发工作更轻量便捷。

模版创建
进入 CodeSpace 主界面后,创建一个 blank 模板用于后续实验:
请添加图片描述
在终端运行下面的命令创建一个新的 conda 环境:

conda create -n mindsearch python=3.10 -y
conda init

注意:如果是新建的 codespace,在第一次创建 conda 环境时,需要 conda init,再另启一个终端并 activate 才能激活环境。不过如果你嫌麻烦,也可以直接使用 source activate 命令直接激活。

虚拟环境创建成功后我们拉取一下 MindSearch 的项目代码并安装一下相关依赖:

conda activate mindsearch

cd /workspaces/codespaces-blank
git clone https://github.com/InternLM/MindSearch.git && cd MindSearch && git checkout ae5b0c5

pip install -r requirements.txt

获取硅基移动 API KEY
进入 硅基移动官网,注册登录完成后找到左侧导航栏的 API 秘钥 选项,点击进入,然后创建一个自己的 API KEY:

请添加图片描述
启动 MindSearch
获取到 API KEY 之后回到 CodeSpace,在正式运行前后端之前先在终端设置一下我们的 API KEY 环境变量:

export SILICON_API_KEY=<上面复制的API KEY>

然后执行下面的代码来启动 MindSearch 的后端:

# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch --asy

后端启动命令的参数解释如下:

–lang:模型的语言,en 为英语,cn 为中文
–model_format:模型的格式
internlm_silicon 为 InternLM2.5-7b-chat 在硅基流动上的API模型
–search_engine:搜索引擎
DuckDuckGoSearch 为 DuckDuckGo 搜索引擎
BingSearch 为 Bing 搜索引擎
BraveSearch 为 Brave 搜索引擎
GoogleSearch 为 Google Serper 搜索引擎
TencentSearch 为 Tencent 搜索引擎
请添加图片描述

后端启动完成后我们执行下面的代码启动前端:

conda activate mindsearch
# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python frontend/mindsearch_gradio.py

前后端都启动后,我们可以看到 CodeSpace 自动为这两个进程做了端口转发:
请添加图片描述
如果前端启动后没有自动跳转页面的话在可以点击上图的 7882 端口转发地址手动进入前端页面

正常的前端页面长这个样子:
请添加图片描述
我让 MindSearch 帮我解读 MAE 这篇论文的创新点和模型应用,最终 MindSearch 回复如下:
请添加图片描述
整体来说回答的还不错~

部署 MindSearch 到 HuggingFace Spaces 上

在之前的课程中,我们尝试了把一些模型部署到 HuggingFace Spaces 上,但是我们的做法比较繁琐,需要先 clone,再修改自己的代码,再 push 上去,还有可能遇到网络问题需要换镜像源。下面我们 MindSearch 的部署将采用一种更简单的方法。

首先我们找到 InternLM 官方部署的 MindSearch Spaces 应用,找到右上角的三个小点:
请添加图片描述
选择 Duplicate this Space,复制这个项目到自己的 Space 中,在配置页面,硬件选免费的 16G CPU ,然后填写好自己的SILICON_API_KEY:请添加图片描述
配置好后应用就会开始 Building,当应用状态显示绿色的 running 标志时我们就可以使用应用了。
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值