非降线的路径数

题目描述

计算从 ( 0 , 0 ) (0, 0) (0,0) 点到 ( n , n ) (n,n) (n,n) 点的不穿过直线 y = x y = x y=x 的非降路径数。

首先我们有 ( r r ) + ( r + 1 r ) + ⋯ + ( n r ) = ( n + 1 r + 1 ) \binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n}{r}=\binom{n+1}{r+1} (rr)+(rr+1)++(rn)=(r+1n+1)

令从点 ( 0 , 0 ) (0,0) (0,0) 到点 ( i , j ) 的 路 径 数 为 a [ i , j ] (i,j) 的路径数为 a[i,j] (i,j)a[i,j],先考虑右下三角形 ( i &gt; j ) (i &gt; j) (i>j),与左上三角形 ( i &lt; j ) (i &lt; j) (i<j) 对称, 则有 a [ i , j ] = { a [ i − 1 , j ] + a [ i , j − 1 ] , i &gt; j ≥ 1 a [ i , j − 1 ] , i = j 1 , j = 0 a[i,j]=\left\{\begin{array}{cc} a[i-1,j]+a[i,j-1], &amp; i&gt;j\ge1\\ a[i,j-1], &amp; i=j \\ 1, &amp; j = 0 \end{array}\right. a[i,j]=a[i1,j]+a[i,j1],a[i,j1],1,i>j1i=jj=0
可知 a [ n , 1 ] = a [ n − 1 , 1 ] + a [ n , 0 ] = a [ n − 1 , 1 ] + 1 = a [ 1 , 1 ] + n − 1 = n = ( n 1 ) a[n,1]=a[n-1,1]+a[n,0]=a[n-1,1]+1=a[1,1]+n-1=n=\binom{n}{1} a[n,1]=a[n1,1]+a[n,0]=a[n1,1]+1=a[1,1]+n1=n=(1n)

a [ n , 2 ] = a [ n − 2 , 2 ] + a [ n − 1 , 1 ] = a [ 2 , 1 ] + a [ 3 , 1 ] + ⋯ + a [ n − 1 , 1 ] + a [ n , 1 ] = ( 2 1 ) + ( 3 1 ) + ( n − 1 1 ) + ( n 1 ) = ( n + 1 2 ) − ( n + 1 0 ) a[n,2]=a[n-2,2]+a[n-1,1]=a[2,1]+a[3,1]+\cdots+a[n-1,1]+a[n,1]=\binom{2}{1}+\binom{3}{1}+\binom{n-1}{1}+\binom{n}{1}=\binom{n+1}{2}-\binom{n+1}{0} a[n,2]=a[n2,2]+a[n1,1]=a[2,1]+a[3,1]++a[n1,1]+a[n,1]=(12)+(13)+(1n1)+(1n)=(2n+1)(0n+1)
同理 a [ n , 3 ] = ( n + 2 3 ) − ( n + 2 1 ) a[n,3]=\binom{n+2}{3}-\binom{n+2}{1} a[n3]=(3n+2)(1n+2)
于是有 a [ n , n ] = ( 2 n − 1 n ) − ( 2 n − 1 n − 2 ) = ( 2 n − 1 ) ! n ! ( n − 1 ) ! − ( 2 n − 1 ) ! ( n − 2 ) ! ( n + 1 ) ! = ( 2 n − 1 ) ! ( n − 2 ) ! n ! ( 1 n − 1 + 1 n + 1 ) = ( 2 n ) ! n ! n ! ( n + 1 ) = ( 2 n n ) 1 n + 1 a[n,n]=\binom{2n-1}{n}-\binom{2n-1}{n-2}=\frac{(2n-1) !}{n!(n-1)!}-\frac{(2n-1)!}{(n-2)!(n+1)!}=\frac{(2n-1)!}{(n-2)!n!}(\frac{1}{n-1}+\frac{1}{n+1})=\frac{(2n)!}{n!n!(n+1)}=\binom{2n}{n}\frac{1}{n+1} a[n,n]=(n2n1)(n22n1)=n!(n1)!(2n1)!(n2)!(n+1)!(2n1)!=(n2)!n!(2n1)!(n11+n+11)=n!n!(n+1)(2n)!=(n2n)n+11

证明如下:
n n n 个不同的球中取出 r r r 个球,取法数为 ( n r ) \binom{n}{r} (rn),选定其中某个球,该球或者属于这 r r r 个球,或者不属于,如果属于有 ( n − 1 r − 1 ) \binom{n-1}{r-1} (r1n1) 种取法,如果不属于则有 ( n − 1 r ) \binom{n-1}{r} (rn1) 种取法,所以有 ( n r ) = ( n − 1 r − 1 ) + ( n − 1 r ) \binom{n}{r} = \binom{n-1}{r-1}+\binom{n-1}{r} (rn)=(r1n1)+(rn1),即该球在所有的 r r r 的取法集合里确定了一个划分 ( p a r t i t i o n ) (partition) (partition)。于是有 ( r r ) + ( r + 1 r ) = ( r + 1 r + 1 ) + ( r + 1 r ) = ( r + 2 r + 1 ) , ⋯ &ThinSpace; , ( n r + 1 ) + ( n r ) = ( n + 1 r + 1 ) \binom{r}{r}+\binom{r+1}{r}=\binom{r+1}{r+1}+\binom{r+1}{r}=\binom{r+2}{r+1},\cdots, \binom{n}{r+1}+\binom{n}{r}=\binom{n+1}{r+1} (rr)+(rr+1)=(r+1r+1)+(rr+1)=(r+1r+2),,(r+1n)+(rn)=(r+1n+1)

r = 1 r=1 r=1 时,上述实际变为 1 + 2 + ⋯ + n = ( n + 1 2 ) 1+2+\cdots+n=\binom{n+1}{2} 1+2++n=(2n+1),令 s n ( 1 ) = n s_n^{(1)}=n sn(1)=n s n ( k + 1 ) = ∑ i = 1 n s i ( k ) s_n^{(k+1)}=\sum_{i=1}^{n}s_i^{(k)} sn(k+1)=i=1nsi(k),于是根据上述公式可以推出 s n ( k ) = ( n + k − 1 k ) s_n^{(k)}=\binom{n+k-1}{k} sn(k)=(kn+k1)

在上面的证明过程中,我们知道 ( n r ) = ( n − 1 r − 1 ) + ( n − 1 r ) \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r} (rn)=(r1n1)+(rn1),这是选定 1 1 1个球时确定的二元划分,如果取 2 2 2 个球,有四种 r r r 个元素的集合: 1 ) 1) 1) 不含这两个元素的集合, 2 ) 2) 2) 只含有第一个元素的集合, 3 ) 3) 3)只含有第二个元素的集合, 4 ) 4) 4)同时含有这两个元素的集合,如果用编码的方式 ′ 0 ′ &#x27;0&#x27; 0表示不包含在集合内, ′ 1 ′ &#x27;1&#x27; 1 表示包含在集合内,于是有 ′ 0 0 ′ , ′ 0 1 ′ , ′ 1 0 ′ , ′ 1 1 ′ &#x27;00&#x27;,&#x27;01&#x27;,&#x27;10&#x27;,&#x27;11&#x27; 00,01,10,11 2 2 = 4 2^2=4 22=4 种编码方式,例如假设选定 3 3 3 个球,于是有 ( n r ) = ( 3 0 ) ( n − 3 r ) + ( 3 1 ) ( n − 3 r − 1 ) + ( 3 2 ) ( n − 3 r − 2 ) + ( 3 3 ) ( n − 3 r − 3 ) \binom{n}{r}=\binom{3}{0}\binom{n-3}{r}+\binom{3}{1}\binom{n-3}{r-1}+\binom{3}{2}\binom{n-3}{r-2}+\binom{3}{3}\binom{n-3}{r-3} (rn)=(03)(rn3)+(13)(r1n3)+(23)(r2n3)+(33)(r3n3) 导出了一个 r r r 元素集合的 2 3 = 9 2^3=9 23=9 划分。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值