非降线的路径数

题目描述

计算从 (0,0)(0, 0) 点到 (n,n)(n,n) 点的不穿过直线 y=xy = x 的非降路径数。

首先我们有(rr)+(r+1r)++(nr)=(n+1r+1)\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n}{r}=\binom{n+1}{r+1}

令从点 (0,0)(0,0) 到点 (i,j)a[i,j](i,j) 的路径数为 a[i,j],先考虑右下三角形 (i>j)(i > j),与左上三角形 (i<j)(i < j) 对称, 则有a[i,j]={a[i1,j]+a[i,j1],i>j1a[i,j1],i=j1,j=0a[i,j]=\left\{\begin{array}{cc} a[i-1,j]+a[i,j-1], & i>j\ge1\\ a[i,j-1], & i=j \\ 1, & j = 0 \end{array}\right.
可知 a[n,1]=a[n1,1]+a[n,0]=a[n1,1]+1=a[1,1]+n1=n=(n1)a[n,1]=a[n-1,1]+a[n,0]=a[n-1,1]+1=a[1,1]+n-1=n=\binom{n}{1}

a[n,2]=a[n2,2]+a[n1,1]=a[2,1]+a[3,1]++a[n1,1]+a[n,1]=(21)+(31)+(n11)+(n1)=(n+12)(n+10)a[n,2]=a[n-2,2]+a[n-1,1]=a[2,1]+a[3,1]+\cdots+a[n-1,1]+a[n,1]=\binom{2}{1}+\binom{3}{1}+\binom{n-1}{1}+\binom{n}{1}=\binom{n+1}{2}-\binom{n+1}{0}
同理 a[n3]=(n+23)(n+21)a[n,3]=\binom{n+2}{3}-\binom{n+2}{1}
于是有 a[n,n]=(2n1n)(2n1n2)=(2n1)!n!(n1)!(2n1)!(n2)!(n+1)!=(2n1)!(n2)!n!(1n1+1n+1)=(2n)!n!n!(n+1)=(2nn)1n+1a[n,n]=\binom{2n-1}{n}-\binom{2n-1}{n-2}=\frac{(2n-1) !}{n!(n-1)!}-\frac{(2n-1)!}{(n-2)!(n+1)!}=\frac{(2n-1)!}{(n-2)!n!}(\frac{1}{n-1}+\frac{1}{n+1})=\frac{(2n)!}{n!n!(n+1)}=\binom{2n}{n}\frac{1}{n+1}

证明如下:
nn 个不同的球中取出 rr 个球,取法数为 (nr)\binom{n}{r},选定其中某个球,该球或者属于这 rr 个球,或者不属于,如果属于有 (n1r1)\binom{n-1}{r-1} 种取法,如果不属于则有 (n1r)\binom{n-1}{r} 种取法,所以有 (nr)=(n1r1)+(n1r)\binom{n}{r} = \binom{n-1}{r-1}+\binom{n-1}{r},即该球在所有的rr 的取法集合里确定了一个划分(partition)(partition)。于是有 (rr)+(r+1r)=(r+1r+1)+(r+1r)=(r+2r+1), ,(nr+1)+(nr)=(n+1r+1)\binom{r}{r}+\binom{r+1}{r}=\binom{r+1}{r+1}+\binom{r+1}{r}=\binom{r+2}{r+1},\cdots, \binom{n}{r+1}+\binom{n}{r}=\binom{n+1}{r+1}

r=1r=1 时,上述实际变为 1+2++n=(n+12)1+2+\cdots+n=\binom{n+1}{2},令 sn(1)=ns_n^{(1)}=nsn(i+1)=i=1nsn(i)s_n^{(i+1)}=\sum_{i=1}^{n}s_n^{(i)},于是根据上述公式可以推出 sn(k)=(n+k1k)s_n^{(k)}=\binom{n+k-1}{k}

在上面的证明过程中,我们知道 (nr)=(n1r1)+(n1r)\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r},这是选定 11个球时确定的二元划分,如果取 22 个球,有四种 rr 个元素的集合:1)1) 不含这两个元素的集合, 2)2) 只含有第一个元素的集合,3)3)只含有第二个元素的集合,4)4)同时含有这两个元素的集合,如果用编码的方式 0'0'表示不包含在集合内,1'1' 表示包含在集合内,于是有 00,01,10,11'00','01','10','11'22=42^2=4 种编码方式,例如假设选定 33 个球,于是有 (nr)=(30)(n3r)+(31)(n3r1)+(32)(n3r2)+(33)(n3r3)\binom{n}{r}=\binom{3}{0}\binom{n-3}{r}+\binom{3}{1}\binom{n-3}{r-1}+\binom{3}{2}\binom{n-3}{r-2}+\binom{3}{3}\binom{n-3}{r-3} 导出了一个rr 元素集合的 23=92^3=9 划分。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭