非降线的路径数

题目描述

计算从 (0,0) 点到 (n,n) 点的不穿过直线 y=x 的非降路径数。

首先我们有

(rr)+(r+1r)++(nr)=(n+1r+1)

令从点 (0,0) 到点 (i,j) 的路径数为 a[i,j],先考虑右下三角形 (i>j),与左上三角形 (i<j) 对称, 则有

a[i,j]={a[i1,j]+a[i,j1],i>j1a[i,j1],i=j1,j=0

可知 a[n,1]=a[n1,1]+a[n,0]=a[n1,1]+1=a[1,1]+n1=n=(n1)

a[n,2]=a[n2,2]+a[n1,1]=a[2,1]+a[3,1]++a[n1,1]+a[n,1]=(21)+(31)+(n11)+(n1)=(n+12)(n+10)
同理 a[n3]=(n+23)(n+21)
于是有 a[n,n]=(2n1n)(2n1n2)=(2n1)!n!(n1)!(2n1)!(n2)!(n+1)!=(2n1)!(n2)!n!(1n1+1n+1)=(2n)!n!n!(n+1)=(2nn)1n+1

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页