【Github】nlp-journey: NLP相关代码、书目、论文、博文、算法、项目资源链接

点击上方,选择星标置顶,每天给你送干货

阅读大概需要9分钟

跟随小博主,每天进步一丢丢

转载自:AINLP

推荐Github上一个NLP相关的项目:msgi/nlp-journey

项目地址,阅读原文可以直达,欢迎参与和Star:

https://github.com/msgi/nlp-journey

这个项目的作者是AINLP交流群里的慢时光同学,该项目收集了NLP相关的一些代码, 包括词向量(Word Embedding)、命名实体识别(NER)、文本分类(Text Classificatin)、文本生成、文本相似性(Text Similarity)计算等,基于keras和tensorflow,也收集了相关的书目、论文、博文、算法、项目资源链接,并且很细致的做了分类。

以下来自该项目介绍页,点击阅读原文可以直达相关资源链接。


基础算法

  • 基础知识

  • 常见问题

  • 实践笔记

经典书目(百度云 提取码:b5qq)

  • Deep Learning.深度学习必读. 

  • 斯坦福大学《语音与语言处理》第三版:NLP必读.

  • Neural Networks and Deep Learning. 入门必读. 

  • 复旦大学《神经网络与深度学习》邱锡鹏教授. 

  • CS224d: Deep Learning for Natural Language Processing. 

必读论文

  • EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks.

  • A Neural Probabilistic Language Model. 

  • Transformer. 

  • Transformer-XL. 

  • Convolutional Neural Networks for Sentence Classification. 

  • Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification. 

  • A Question-Focused Multi-Factor Attention Network for Question Answering. 

  • AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. 

  • GloVe: Global Vectors for Word Representation. 

  • A Deep Ensemble Model with Slot Alignment for Sequence-to-Sequence Natural Language Generation. 

  • The Design and Implementation of XiaoIce, an Empathetic Social Chatbot. 

  • A Knowledge-Grounded Neural Conversation Model. 

  • Neural Generative Question Answering. 

  • A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification. 

  • ImageNet Classification with Deep Convolutional Neural Networks. 

  • Network In Network. 

  • Long Short-term Memory. 

  • Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. 

  • Get To The Point: Summarization with Pointer-Generator Networks. 

  • Generative Adversarial Text to Image Synthesis. 

  • Image-to-Image Translation with Conditional Adversarial Networks. 

  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 

  • Unsupervised Learning of Visual Structure using Predictive Generative Networks. 

  • Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks. 

  • Event Extraction via Dynamic Multi-Pooling Convolutional Neural. 

  • Low-Memory Neural Network Training:A Technical Report. 

  • Language Models are Unsupervised Multitask Learners. 

  • Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context. 

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 

  • SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. 

必读博文

已实现算法

  •  构建词向量

  •  fasttext(skipgram+cbow)

  •  gensim(word2vec)

  •  数据增强

  •  eda

  •  分类算法

  •  svm

  •  fasttext

  •  textcnn

  •  bilstm+attention

  •  rcnn

  •  han

  •  NER

  •  bilstm+crf

  •  文本相似度

  •  siamese

相关github项目

  • keras-gpt-2. 

  • textClassifier. 

  • attention-is-all-you-need-keras. 

  • BERT_with_keras. 

  • SeqGAN. 

相关博客

  • 莫坠青云志

  • 彗双智能-Keras源码分析

  • 机器之心

  • colah

  • ZHPMATRIX

  • wildml

  • 徐阿衡

  • 零基础入门深度学习

相关会议

  • Association of Computational Linguistics(计算语言学协会). ACL

  • Empirical Methods in Natural Language Processing. EMNLP

  • International Conference on Computational Linguistics. COLING

  • Neural Information Processing Systems(神经信息处理系统会议). NIPS

  • AAAI Conference on Artificial Intelligence. AAAI

  • International Joint Conferences on AI. IJCAI

  • International Conference on Machine Learning(国际机器学习大会). ICML

编辑不易,还望给个好看!

推荐阅读:

一大批历史精彩文章啦

【一分钟知识】七种损失函数

【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译

【一分钟论文】轻松解读Semi-supervised Sequence Learning半监督序列学习

详解Transition-based Dependency parser基于转移的依存句法解析器

干货 | 找工作的经验总结(一)

经验 | 初入NLP领域的一些小建议

学术 | 如何写一篇合格的NLP论文

干货 | 那些高产的学者都是怎样工作的?

是时候研读一波导师的论文--一个简单有效的联合模型

近年来NLP在法律领域的相关研究工作


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值