深度学习自然语言处理 分享
整理:pp
摘要:Dense Retrieval(DR)现在被认为是一种很有前途的工具,可以通过结合外部记忆来增强大型语言模型(LLM)(如 GPT3 和 GPT-4)的记忆能力。然而,由于 LLM 的文本生成与 DR 之间存在范式差异,如何在共享 LLM 中整合检索和生成任务仍是一个有待解决的难题。本文提出了一种高效的面向 LLM 的检索调谐器(即 LMORT),它将 DR 能力与基础 LLM 解耦,并以非侵入方式协调 LLM 的优化排列和统一层,使其趋向统一的 DR 空间,从而在不影响 LLM 本身的情况下实现高效和有效的 DR。在六个 BEIR 数据集上进行的大量实验表明,与一系列强 DR 模型相比,我们的方法可以在保持 LLM 生成能力的同时,实现具有竞争力的零点检索性能。
https://arxiv.org/abs/2403.00801
Q1: 这篇论文试图解决什么问题?
A:这篇论文提出了一个名为Self-Retrieval的新型信息检索(IR)系统架构,旨在解决现有IR系统在与大型语言模型(LLMs)交互时的局限性。具体来说,论文试图解决以下问题:
现有IR系统的孤立架构和有限交互性:传统的IR系统在检索信息时,无法充分利用LLMs的强大语义理解和表示能力,这限制了它们在信息检索过程中的表现。
LLMs在信息获取中的新角色:随着LLMs的出现,人类获取信息的方式正在从直接使用IR系统搜索信息转变为使用LLMs生成信息。这种范式转变要求IR系统能够更好地支持LLMs,而不是仅仅服务于人类用户。
LLMs的内部知识与检索器的兼容性:在检索增强生成(RAG)等应用中,LLMs需要从IR系统中获取相关信息,但现有的IR系统往往无法保证检索到的信息真正符合LLMs的需求。
LLMs的语义理解能力未被充分利用:尽管LLMs在语义表示方面取得了快速发展,但现有的IR系统很少从这些模型中受益,这限制了IR系统的性能。
为了解决这些问题,Self-Retrieval架构通过将IR系统所需的存储、索引、检索和评估能力完全内部化到单个LLM中,并在IR过程中深入利用LLMs的能力,从而实现了一个端到端的、由LLM驱动的信息检索系统。这种方法旨在提高检索性能,并显著提升LLM驱动的下游应用(如检索增强生成)的性能。
Q2: 有哪些相关研究?
A:这篇论文提到了与Self-Retrieval相关的几个研究领域和具体工作,包括:
Dense Retrieval:这类模型通过匹配密集向量来进行信息检索。一个编码器将查询和文档转换为密集向量,并通过测量它们之间的距离来确定相似性。相关工作包括设计损失函数、多向量表示、使用生成查询进行训练以及使用大量查询-文档对进行训练等。
Generative Retrieval:这类方法利用生成式Seq2seq语言模型的能力,将查询作为输入并输出检索到的文档标识符。研究集中在提高生成式检索的训练技术和结构上。
**Retrieval Augmented Generation (RAG)**:在RAG中,LLMs使用检索到的外部知识作为输入,以更准确地生成响应,从而超越其内部知识并减少幻觉生成。RAG的主要问题是检索器可能检索到噪声文档。相关工作包括提高检索器性能、增强LLMs的鲁棒性以及优化RAG过程。
LLMs在检索增强生成中的应用:例如,Yu等人(2023a)提出了“生成然后阅读”的方法,主张使用LLMs直接生成文档,而不是依赖检索器。
这些相关研究为Self-Retrieval提供了背景和对比,展示了在信息检索领域中,如何利用LLMs的能力来改进现有的系统和方法。Self-Retrieval通过整合这些研究成果,提出了一种新的端到端的IR架构,以更好地服务于LLMs。
Q3: 论文如何解决这个问题?
A:论文提出了一个名为Self-Retrieval的端到端、由大型语言模型(LLM)驱动的信息检索架构,以解决现有IR系统与LLMs交互的局限性。Self-Retrieval的解决方案包括以下几个关键部分:
索引(Indexing):Self-Retrieval通过自监督学习将语料库内部化到LLM的参数中,并在模型内建立一个用自然语言描述的隐式索引结构。这样,LLM可以记住文档并通过自监督学习构建索引。
检索(Retrieval):在检索阶段,Self-Retrieval模型将输入查询映射到自然语言描述的索引,然后基于这个索引直接生成与查询相关的文档。
自我评估(Self-assessment):在生成文档后,Self-Retrieval模型会进行自我评估,以确定生成的文档是否满足查询的需求。这通过生成批准或拒绝的响应来完成,这些响应基于文档与查询的相关性。
训练(Learning):为了使LLM具备上述能力,Self-Retrieval使用不同类型的训练数据来训练模型。这包括将查询映射到自然语言索引的能力、给定查询和索引候选时检索文档的能力,以及进行自我评估的能力。
实验(Experiments):作者在开放域问答任务上进行了实验,以验证Self-Retrieval在检索以及检索增强生成应用中的有效性。实验结果表明,Self-Retrieval在检索性能上显著优于以前的稀疏检索、密集检索和生成检索方法,并且能够显著提升检索增强生成的性能。
通过这些方法,Self-Retrieval能够充分利用LLMs的语义理解和匹配能力,实现基于深度语义信息的检索目标,并通过端到端的方式,确保检索和下游任务(如RAG)依赖于LLMs的同一套内部知识,从而提高检索和下游任务之间的一致性。
Q4: 论文做了哪些实验?
A:论文中进行了一系列实验来验证Self-Retrieval架构的有效性,主要包括以下几个方面:
数据集和指标:实验在Natural Questions (NQ) 和 TriviaQA 数据集上进行,这两个数据集可以通过从Wikipedia检索文档来回答。主要使用段落级别的MRR@5(Mean Reciprocal Rank at 5)作为检索指标,并报告Hit@1和Hit@5。
实现细节:使用了StableLM-3b和Llama27b作为基础模型,并在不同规模的LLMs上训练模型以评估模型规模的影响。使用ZeRO 2在8个NVIDIA A-100 80g GPU上进行训练,使用AdamW优化器,每个GPU的批量大小为16,使用Bfloat16精度。
基线比较:将Self-Retrieval与稀疏检索、密集检索和生成检索的基线模型进行比较。这些基线模型包括BM25、DPR、GTR、BGE、OpenAI-embedding等,以及DSI、DSI-QG和NCI等生成检索模型。
主要结果:实验结果显示,Self-Retrieval在检索性能上显著优于稀疏和密集检索基线,平均MRR@5提高了11%。与生成检索基线相比,Self-Retrieval在段落级检索上更有效,能够实现与密集检索相当的或更优的性能。
端到端检索增强生成性能:在Self-Retrieval模型上进行了端到端的检索增强生成实验。使用BGE-FT作为检索器和微调后的StableLM-3b作为阅读器,使用Exact Match (EM)作为指标。结果表明,Self-Retrieval能够实现良好的RAG性能。
详细分析:对自然语言索引的选择策略、自我评估的评分策略以及不同模型规模对Self-Retrieval性能的影响进行了详细分析。
局限性:论文讨论了Self-Retrieval在处理大规模文档集时的局限性,并提出了未来工作的方向,包括探索文档大小与模型参数之间的扩展规律,以及将Self-Retrieval应用于其他不同的下游任务。
这些实验结果不仅证明了Self-Retrieval在信息检索任务上的有效性,还展示了其在检索增强生成等下游任务中的潜力。通过这些实验,作者展示了Self-Retrieval如何利用LLMs的能力来改进现有的IR系统。
Q5: 有什么可以进一步探索的点?
A:论文中提出了几个可以进一步探索的点,主要包括:
文档大小与模型参数的扩展规律:论文中使用了40K文档进行实验,并在3B和7B参数规模的模型上验证了方法的有效性。未来的工作可以探索不同规模的文档集与模型参数之间的最佳匹配关系,以及如何有效地扩展Self-Retrieval以处理更大规模的数据集。
其他下游任务的适用性:虽然论文中使用检索增强生成(RAG)来验证Self-Retrieval的有效性,但Self-Retrieval的潜力可能不限于此。未来的研究可以探索Self-Retrieval在其他下游任务中的应用,例如文本摘要、对话系统、知识图谱问答等。
索引策略的改进:论文中提到了使用有意义的自然语言索引对检索性能的重要性。未来的工作可以探索更先进的索引策略,以进一步提高检索的准确性和效率。
自我评估机制的优化:虽然Self-Retrieval中的自我评估机制已经显示出一定的效果,但仍有改进空间。未来的研究可以探索更复杂的自我评估方法,以更准确地评估生成文档的相关性。
模型训练和微调:论文中提到了使用自监督学习来内部化语料库,以及使用不同类型的训练数据来开发Self-Retrieval模型的不同能力。未来的工作可以探索更有效的训练和微调策略,以进一步提高模型的性能。
模型的可解释性和透明度:随着LLMs在IR中的应用越来越广泛,模型的可解释性和透明度变得越来越重要。未来的研究可以探索如何提高Self-Retrieval模型的可解释性,以便更好地理解和信任模型的决策过程。
跨语言和跨领域的适应性:当前的Self-Retrieval模型主要针对英文数据集进行了实验。未来的工作可以探索模型在不同语言和领域中的适应性和泛化能力。
Q6: 总结一下论文的主要内容?
A:这篇论文提出了一个名为Self-Retrieval的新型信息检索(IR)系统架构,它是一个端到端、由大型语言模型(LLM)驱动的系统,旨在解决现有IR系统在与LLMs交互时的局限性。以下是论文的主要内容总结:
问题背景:随着LLMs的出现,人类获取信息的方式正在从直接搜索转变为使用LLMs生成信息。现有的IR系统由于其孤立架构和有限的交互性,无法充分利用LLMs的能力。
Self-Retrieval架构:提出了一个将IR系统的所有功能(存储、索引、检索和评估)内部化到单个LLM中的架构。这个过程包括自然语言索引的构建、基于索引的文档生成以及对生成文档的自我评估。
关键组件:
索引(Indexing):通过自监督学习将语料库内部化到LLM中,建立自然语言索引。
检索(Retrieval):将用户查询映射到自然语言索引,然后基于这些索引生成相关文档。
自我评估(Self-assessment):对生成的文档进行评估,以确定其是否满足查询需求。
实验验证:在Natural Questions和TriviaQA数据集上进行了实验,结果表明Self-Retrieval在检索性能上显著优于传统的稀疏和密集检索方法,并且在检索增强生成(RAG)任务中也表现出色。
详细分析:对自然语言索引的选择策略、自我评估机制以及模型规模对性能的影响进行了深入分析。
未来工作:提出了进一步探索的点,包括文档大小与模型参数的扩展规律、Self-Retrieval在其他下游任务中的应用、索引策略和自我评估机制的优化等。
局限性:讨论了Self-Retrieval在处理大规模文档集时的局限性,并提出了未来工作的方向。
总的来说,这篇论文通过Self-Retrieval架构,展示了如何更好地利用LLMs的能力来实现高效的信息检索,同时为LLMs在IR领域的应用提供了新的视角和方法。
以上内容均由KimiChat生成,深入了解论文内容仍需精读论文
备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群
id:DLNLPer,记得备注呦