主题
大语言模型的时间魔法:从共时推理到框架优化
Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? - ACL2024
Timo: Towards Better Temporal Reasoning for Language Models
嘉宾

苏肇辰,苏州大学二年级硕士,目前在上海人工智能实验室实习。以第一作者在ACL、EMNLP等国际会议发表多篇论文,同时担任ACL、MM、NAACL等会议和期刊审稿人。他的研究方向主要解决语言模型时间相关的问题,涵盖了模型的时间适应与泛化、时间知识动态对模型的影响以及大语言模型的时间推理能力的提升,个人主页:https://zhaochen0110.github.io
内容
时间推理简要介绍和相关工作
大模型能否理解共时推理?
统一框架的时间推理框架探索
总结与展望
Q&A
引言
时间推理在语言模型的能力中扮演着至关重要的角色。无论是对事件顺序的理解,还是对时间间隔的计算,时间推理都在我们日常生活和各种复杂任务中发挥着重要作用。然而,当前的语言模型在处理时间推理任务时仍然面临许多挑战。本次汇报的目标是探讨语言模型在共时推理和统一框架下提升时间推理能力的研究进展。我们将重点介绍我们近期两篇研究工作:一篇探究语言模型的共时推理能力,另一篇提出了一个通用框架以提升时间推理能力。通过对这两篇研究的介绍,我们希望能为未来的时间推理研究提供新的视角和方法。
时间
周六 2024.6.22 上午10:30-11:30
进群
加小助手,回复nice14进群