SIGIR 2025|打造虚拟情感陪聊机器人新思路:利用个性化实时检索,大幅提升agent主动对话能力

论文标题:PaRT: Enhancing Proactive Social Chatbots with Personalized Real-Time Retrieval
论文链接:http://arxiv.org/abs/2504.20624
研究团队:中国科学技术大学、小红书NLP团队、浙江大学

虚拟情感陪聊机器人已经成为日常场景中不可或缺的智能伴侣,然而,传统的聊天机器人通常依赖被动响应机制,需用户主动发起话题或维持对话流程,这种单向依赖的交互方式往往导致对话缺乏主动性与深度,从而限制了用户的参与度和对话持续时间。为了提升用户体验,主动对话机制被认为是一种行之有效的策略,尽管当前已有方法通过大语言模型prompt实现了话题的发起与切换,但仍面临诸如话题内容缺乏针对性、知识覆盖范围有限等关键挑战。

针对这些难题,我们提出一种全新的方法:PaRT(Proactive Social Chatbots with Personalized Real-time ReTreival),首次实现了个性化驱动、意图识别引导的查询重写与个性化实时检索之间的闭环协同,通过主动对话提供了良好的聊天体验。具体而言,利用大语言模型深度理解用户,结合当前对话上下文和兴趣构建个性化的查询语句,并进行实时信息检索,对返回结果进行总结处理。最终,系统基于检索到的信息生成自然且信息量丰富的回复,实现主动话题的发起与切换。离线实验结果显示,该方法能有效提升虚拟情感陪聊机器人回复的个性化和丰富程度;同时,PaRT已部署至生产环境并稳定运行,线上数据显示其显著提升了平均对话时长,进一步验证了其有效性与实用性。

图1:界面展示:从左到右依次为问候界面、对话页面和资料界面。问候场景由聊天机器人发起,而对话场景旨在主动引导正在进行的对话。

核心方法:个性化实时检索的主动情感陪聊机器人

人类在相互聊天时,常常会根据兴趣、场景或情绪,主动换话题或引出新鲜话题,然而现有的机器人通常忽略了在对话过程中与用户积极互动的重要性,同时也由于更加偏向被动的对话策略,进一步限制了对话的深度和交互时间,最终,使得虚拟情感陪伴机器人的用户体验大打折扣。为了避免传统主动对话方法引起的话题不一致和知识边界问题,我们提出了一种以实时个性化检索增强的主动对话方法:

图2: PaRT方法概述,展示了基于传统聊天机器人(左)和PaRT(右)的不同对话效果。传统聊天机器人,通常依赖用户来主导对话流程,导致对话内容不够深入;而PaRT会将结合个性化信息和对话场景,主动进行内容检索和话题引入,从而保持高质量的对话体验。

具体来说,PaRT 分为以下三个模块:

a. 个性化(User Profiling):该模块作为整个方法的基础组件,主要负责从对话历史中总结信息并通过主动提问来深入理解用户,从而构建一个涵盖兴趣、习惯等多个维度的动态个性化数据库,以便在对话期间不断更新和完善,确保时效性和准确性。基于这些动态更新的信息,该模块能为后续的检索与回复生成提供强有力的支持,使得每一次交互都能更加贴合用户需求和偏好,进而提升体验的整体质量。

b. 意图识别与查询重写(Intent-Guided Query Refiner):该模块为对话过过程中的核心模块,可以通过将识别对话的真实动机,提供更加精细和准确的回复。根据个性化信息、对话上下文和指令,调用大语言模型来识别当前对话意图,其中,潜在对话意图被分为以下三类:

  • 自然过渡(Natural Transition):在对话过程中,用户无进一步检索意图,而是希望就当前话题继续对话,需要自然地衔接先前对话内容,与用户继续交谈并提供连贯的对话陪伴。

  • 显式检索(Explicit Retrieval):如图2中蓝色虚线流程所示,在对话过程中,当用户明确提出信息需求并希望就此展开新的话题,或者系统需要检索最新信息以有效回应用户提问时(例如:“最近的《哪吒2》怎么样?”),将会调用检索系统进行实时信息检索,以便生成合适的回复。

  • 隐式检索(Implicit Retrieval):如图2中的橙色虚线流程所示,在对话过程中,用户可能会表现出兴趣下降或希望结束当前话题,这些迹象表明用户可能感到厌倦或对当前内容缺乏兴趣,而这类用户意图往往容易被忽视。为了保持对话的质量并提供有效的陪伴,对话系统应主动引入新颖且有趣的话题,新话题的选择需结合用户的兴趣点,并对现有实时信息进行检索(例如搜索用户感兴趣的体育项目的最新动态),以确保话题内容既具个性化又富有趣味性,从而持续优化用户的对话体验,提高整体陪伴效果。

在意图识别完成后,针对于显示检索和隐式检索都需要进一步调用实时检索增强的链路,通过利用个性化信息来扩展对话系统的知识边界以实现更有效的回答。因此,在意图识别过程中,我们同步要求模型根据上下文信息与用户背景信息,在意图识别阶段,会同时要求模型依据对话上下文及用户的背景信息对当前检索内容进行优化,生成恰当的检索语句。这样做不仅能更好地反映用户的检索意图,还能保证检索语句具有较高的检索价值并符合用户的兴趣,当调用检索系统时,这将有助于提供更加精准且有效的检索结果。

c. 实时检索增强生成(Retrieval-Augmented Generation):重写后的查询用于检索实时内容。实时检索有助于使后续生成的内容更加贴近现实生活,具备更强的丰富性和时效性,在获取相关检索结果后,系统基于重写后的查询,利用大语言模型对检索结果进行总结和摘要,从而剔除部分与用户意图无关的冗余信息,并对内容进行整合,为后续生成更自然、贴切的回答提供支持。最终,结合摘要内容与对话上下文,对话系统能够生成自然、富有信息量且契合用户兴趣的回复,更为主动地引导高质量对话,从而显著提升用户的互动体验。

通过上述三个模块的共同实现,我们的对话系统最终实现基于实时个性化检索的主动对话,能够给用户提供更加个性化、丰富、流畅的对话内容,提升陪伴过程整体的对话质量,带来更加良好的体验。

实验结果

  • 检索性能大幅提升:在离线测试中,采用意图引导的查询重写后,PaRT 在 P@5 上从 34.00% 提升至 70.56%,整体平均精度(Avg)由 39.25% 提升至 70.96%,较原始用户查询实现了 +31.71% 的显著增益。

  • 生成质量全面领先:利用大语言模型做自动化评估,从三个主要维度,包括个性化程度、信息丰富度和沟通技巧,在问候与对话场景下对生成内容进行全面的主观评估,并在实验中对比了三种方法:传统的直接生成(Direct Generation)、仅基于个性化生成(Persona Generation)以及本文提出的PaRT方法。结果显示:相比直接生成,个性化生成效果更好;而 PaRT 在所有指标上均优于前两种方法,证明结合实时检索和个性化,能显著提升生成质量,带来更贴合用户兴趣的互动体验。

  • 检索数量平衡效果最佳:我们比较 k=1/3/5/10 四种检索规模后发现,k=5 时在问候(2.0867)和对话(2.2058)场景均取得最高平均分,验证了“适度检索”在信息丰富性与噪声抑制之间的最佳平衡。

  • 在线A/B Test显著增加会话时长:在实际生产环境 7 天 A/B 测试中,平均对话时长实现了 +21.77% 的显著增长,进一步证明了主动发起话题和知识富化的卓越效果。

总结与展望

针对真实的情感陪聊机器人产品,我们提出了一种全新的设计和实现思路,能显著提升主动对话能力,为其他同类产品提供了借鉴与参考。

作者介绍

  • 牛子涵:中国科学技术大学2023级硕士生,小红书NLP团队算法实习生,以第一作者/共同一作身份在SIGIR、EMNLP、ICME 等国际顶级会议发表多篇学术论文。主要研究方向:大模型检索增强生成,大模型对话Agent,多模态语义理解等。

  • 谢哲勇:硕士毕业于中国科学技术大学,小红书NLP团队算法工程师,在ACM Trans、SIGIR、EMNLP、ICMR等国际期刊与顶级会议发表数篇学术论文。研究兴趣主要为大模型算法与应用落地,包括大模型角色扮演,情感对话系统,多模态语义理解,多模态大模型推理等。

  • 叶哲宇:硕士毕业于帝国理工计算机专业,小红书NLP团队算法工程师,专注于大模型算法与应用方向,开源社区DMLC成员。他在ICLR、NAACL、EMNLP等国际顶级会议上发表过多篇论文,研究领域涵盖大模型应用、多模态大模型、Agent模拟等。

  • 鲁重钢:硕士毕业于北京航空航天大学,小红书NLP团队算法工程师,在SIGIR、EMNLP等国际顶级会议上发表多篇学术论文,研究兴趣主要为大模型后训练、Agent系统,以及大模型检索增强等。

  • 刘佐珠:浙江大学国际联合学院(ZJU-UIUC Institute)研究员/博导,获批主持国家重点研发计划课题、国自然面青、浙江省重点、浙江大学重大横向等多项项目,参与国自然交叉重点专项和浙江省尖兵计划等项目。近年来以第一/通讯作者在Patterns、IEEE Trans、MIA、NeurIPS,ICLR、ACL、EMNLP等领域旗舰期刊和顶级会议上发表论文30余篇,并担任IJCAI/ACL/EMNLP等国际会议Area Chair。

  • 徐童:中国科学技术大学特任教授、博士生导师,中国中文信息学会青年工作委员会主任,国家优秀青年科学基金获得者。研究领域为多模态知识发现,发表CCF A类期刊/会议论文80余篇,获6项国际学术会议论文奖项,指导学生获国内外学术竞赛/测评冠军10余项,2022年获安徽省科技进步二等奖。

  • 曹绍升:小红书NLP团队负责人,发表论文30余篇,授权专利100余项,引用近4000次,获得ICDE 2023年最佳工业论文奖、CIKM 2015-2020年最高引用论文、AAAI 2016最具影响力论文。此外,他荣获了中国发明协会创新成果一等奖(排名1)、中国人工智能学会吴文俊科技进步二等奖(排名1),连续4年入选世界人工智能学者榜单AI-2000新星榜前100名、Elsevier中国区高被引学者,CCTV-13《新闻直播间》采访报道。


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

id:DLNLPer,记得备注呦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值