描述
Click Here
数组A包含N个元素A1,A2……AN。数组B包含N个元素B1,B2……BN。并且数组A中的每一个元素Ai,都满足1<=Ai<=Bi。数组A的代价定义如下:
(公式表示所有相邻元素的差的绝对值之和)
给出数组B,计算可能的最大代价S。
输入:
第1行:1个数N,表示数组的长度(1<N<50000)
第2-N+1行:每行1个数,对应数组元素Bi(1<Bi<10000)
输出
输出最大代价S。
样例:
输入:
5
10
1
10
1
10
输出:
36
题解
数组A中的每个数要么取值B[i],要么取值1
dp[i][0]表示A[i]取值1时的最大代价
dp[i][1]表示A[i]取值b[i]时的最大代价
所以得到以下递推式子:
当第i位取值1时,前一位可能取值1或者b[i-1],当第i位取值0时,同理。
注意,不能将所有情况混合在一起进行考虑,如下所示的递归表达式,“上一位取值1还是b[i-1]没影响到该位,很明显,这种方式是错误的”
错误实现方式如下:
dp[i]=max_(dp[i-1],dp[i-1]+a[i]-1,dp[i-1]+a[i-1]-1,dp[i-1]+abs(a[i]-a[i-1]));
代码
#include <iostream>
#include<stdio.h>
#include<algorithm>
#define maxn 50005
using namespace std;
int a[maxn],dp[maxn][2];
int main(){
int n;
while(scanf("%d",&n)==1){
for(int i=0; i<n; i++){
scanf("%d",&a[i]);
}
for(int i=1; i<n; i++){
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+a[i-1]-1);
dp[i][1]=max(dp[i-1][0]+a[i]-1,dp[i-1][1]+abs(a[i]-a[i-1]));
}
printf("%d\n",max(dp[n-1][0],dp[n-1][1]));
}
return 0;
}