51Nod1270 数组的最大代价

描述

Click Here
数组A包含N个元素A1,A2……AN。数组B包含N个元素B1,B2……BN。并且数组A中的每一个元素Ai,都满足1<=Ai<=Bi。数组A的代价定义如下:
在这里插入图片描述
(公式表示所有相邻元素的差的绝对值之和)
给出数组B,计算可能的最大代价S。
输入:
第1行:1个数N,表示数组的长度(1<N<50000)
第2-N+1行:每行1个数,对应数组元素Bi(1<Bi<10000)
输出
输出最大代价S。
样例:
输入:
5
10
1
10
1
10
输出:
36

题解

数组A中的每个数要么取值B[i],要么取值1
dp[i][0]表示A[i]取值1时的最大代价
dp[i][1]表示A[i]取值b[i]时的最大代价
所以得到以下递推式子:
在这里插入图片描述
当第i位取值1时,前一位可能取值1或者b[i-1],当第i位取值0时,同理。
注意,不能将所有情况混合在一起进行考虑,如下所示的递归表达式,“上一位取值1还是b[i-1]没影响到该位,很明显,这种方式是错误的”
错误实现方式如下:

dp[i]=max_(dp[i-1],dp[i-1]+a[i]-1,dp[i-1]+a[i-1]-1,dp[i-1]+abs(a[i]-a[i-1]));

代码

#include <iostream>
#include<stdio.h>
#include<algorithm>
#define maxn 50005
using namespace std;
int a[maxn],dp[maxn][2];
int main(){
    int n;
    while(scanf("%d",&n)==1){
        for(int i=0; i<n; i++){
            scanf("%d",&a[i]);
        }
        for(int i=1; i<n; i++){
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]+a[i-1]-1);
            dp[i][1]=max(dp[i-1][0]+a[i]-1,dp[i-1][1]+abs(a[i]-a[i-1]));
        }
        printf("%d\n",max(dp[n-1][0],dp[n-1][1]));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值