Review :
一开始超时超得莫名其妙,艰苦调试之,发现一个很诡异的现象,就是
Update() 竟然会自动执行多一次!
一开始update() 函数的倒数第二句是这样写的:
tree[root].max = max (update (2 * root, pos, val), update (2 * root + 1, pos, val)) ;
于是为了观察其内部究竟是为何会多执行一次,别将其分立开来:
int a, b ;
a = update (2 * root, pos, val) ;
b = update (2 * root + 1, pos, val) ;
tree[root].max = max (a, b) ;
发现它竟然又正常了!正在纳闷之际,猛然看到了max()函数的定义,竟然是宏定义:
#define max(x1, y1) ((x1) > (y1) ? (x1) : (y1))
于是一切豁然开朗,因为宏定义在展开的时候会这样:
max (update (2 * root, pos, val), update (2 * root + 1, pos, val)) ;
等同于:
((update (2 * root, pos, val)) > (update (2 * root, pos, val)) ? (update (2 * root, pos, val)) : (update (2 * root, pos, val)))
于是乎每次遇到max()展开之后就会出现四个update()函数,相当于多了指数级的执行次数!
//----------------------------------------------------------------------------*/
#include <stdio.h>
#include <conio.h>
#include <string.h>
#define max(x1, y1) ((x1) > (y1) ? (x1) : (y1))
#define min(x1, y1) ((x1) < (y1) ? (x1) : (y1))
#define MAXSIZE 200002
typedef struct {
int max ;
int left, right ;
} NODE ;
int n, m ;
int num [MAXSIZE] ;
NODE tree[MAXSIZE * 20] ;
// 构建线段树
int build (int root, int left, int right)
{
int mid ;
// 当前节点所表示的区间
tree[root].left = left ;
tree[root].right = right ;
// 左右区间相同,则此节点为叶子,max 应储存对应某个学生的值
if (left == right)
{
return tree[root].max = num[left] ;
}
mid = (left + right) / 2 ;
// 递归建立左右子树,并从子树中获得最大值
int a, b ;
a = build (2 * root, left, mid) ;
b = build (2 * root + 1, mid + 1, right) ;
return tree[root].max = max (a, b) ;
}
// 从节点 root 开始,查找 left 和 right 之间的最大值
int find (int root, int left, int right)
{
int mid ;
// 若此区间与 root 所管理的区间无交集
if (tree[root].left > right || tree[root].right < left)
return 0 ;
// 若此区间包含 root 所管理的区间
if (left <= tree[root].left && tree[root].right <= right)
return tree[root].max ;
// 若此区间与 root 所管理的区间部分相交
int a, b ; // 不能这样 max (find(...), find(...));
a = find (2 * root, left, right) ;
b = find (2 * root + 1, left, right) ;
return max (a, b) ;
}
// 更新 pos 点的值
int update (int root, int pos, int val)
{
// 若 pos 不存在于 root 所管理的区间内
if (pos < tree[root].left || tree[root].right < pos)
return tree[root].max ;
// 若 root 正好是一个符合条件的叶子
if (tree[root].left == pos && tree[root].right == pos)
return tree[root].max = val ;
// 否则。。。。
int a, b ; // 不能这样 max (find(...), find(...));
a = update (2 * root, pos, val) ;
b = update (2 * root + 1, pos, val) ;
tree[root].max = max (a, b) ;
return tree[root].max ;
}
int main ()
{
char c ;
int i ;
int x, y ;
while (scanf ("%d%d", &n, &m) != EOF)
{
for (i = 1 ; i <= n ; ++i)
scanf ("%d", &num[i]) ;
build (1, 1, n) ;
for (i = 1 ; i <= m ; ++i)
{
getchar () ;
scanf ("%c%d%d", &c, &x, &y) ;
if (c == 'Q')
{
printf ("%d\n", find (1, x, y)) ;
}
else
{
num[x] = y ;
update (1, x, y) ;
}
}
}
return 0 ;
}
poj 1754 I Hate It -- 线段树(卡时间啊啊啊啊啊)
最新推荐文章于 2021-11-15 22:13:06 发布